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Abstract

Current fine-grained visual classification (FGVC) mod-
els are isolated. In practice, we first need to identify the
coarse-grained label of an object, then select the corre-
sponding FGVC model for recognition. This hinders the ap-
plication of FGVC algorithms in real-life scenarios. In this
paper, we propose an erudite FGVC model jointly trained
by several different datasets1, which can efficiently and ac-
curately predict an object’s fine-grained label across the
combined label space. We found through a pilot study
that positive and negative transfers co-occur when differ-
ent datasets are mixed for training, i.e., the knowledge
from other datasets is not always useful. Therefore, we
first propose a feature disentanglement module and a fea-
ture re-fusion module to reduce negative transfer and boost
positive transfer between different datasets. In detail, we
reduce negative transfer by decoupling the deep features
through many dataset-specific feature extractors. Subse-
quently, these are channel-wise re-fused to facilitate pos-
itive transfer. Finally, we propose a meta-learning based
dataset-agnostic spatial attention layer to take full advan-
tage of the multi-dataset training data, given that localisa-
tion is dataset-agnostic between different datasets. Exper-
imental results across 11 different mixed-datasets built on
four different FGVC datasets demonstrate the effectiveness
of the proposed method. Furthermore, the proposed method
can be easily combined with existing FGVC methods to
obtain state-of-the-art results. Our code is available at
https://github.com/PRIS-CV/An-Erudite-
FGVC-Model.

1. Introduction
In daily life, most people can quickly identify the coarse-

grained label of an object (e.g., car, bird, or aircraft). Then
if we want to go further and identify its fine-grained la-

*indicates the corresponding author.
1In this paper, different datasets mean different fine-grained visual clas-

sification datasets.
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Figure 1. How to identify the fine-grained labels of an object? Cur-
rent paradigms require two stages: coarse-grained visual classifi-
cation and fine-grained visual classification. This paper transforms
the two stages of recognition into an erudite fine-grained visual
classification model, which can directly recognise the fine-grained
labels of objects across different coarse-grained label spaces.

bels (e.g., “Ferrari FF Coupe” [20], “Sayornis” [36], “Boe-
ing 727-200” [25]), we must learn and master the relevant
knowledge [7]. However, it is impossible to master the
knowledge and the classification topology of all objects in
the world. A critical way to address this problem is to de-
velop FGVC algorithms which can assist humans to recog-
nise the fine-grained labels of different objects. Moreover,
with the rapid development of deep learning, current FGVC
algorithms have already abandoned the reliance on addi-
tional information [2, 5] (e.g., attributes, bounding boxes)
and have achieved recognition performance of over 90% on
a wide range of fine-grained datasets [38], with the ability
to be applied in practice.

However, current FGVC algorithms are all based on a
single source of training data, e.g., a model trained on the
CUB-200-2011 [36] dataset can only be used to recognise
the species of a bird. If we want to identify a model for a
car, we have to use another FGVC model. Specifically, as
shown in Figure 1, if we want to recognise the fine-grained
label of an object, we first need to know its coarse-grained
label (e.g., birds vs. cars) through a coarse-grained vi-
sual classification model, then select its corresponding fine-
grained model from the FGVC model zoo and recognise

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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its fine-grained label. This two-stage approach faces four
challenges: Firstly, the inference time becomes longer (first
coarse-grained image recognition, then fine-grained image
recognition); Secondly, more storage space is required (dif-
ferent FGVC datasets require different fine-grained models
to be stored); Thirdly, the accumulation of errors occurs (the
accuracy of coarse-grained image recognition directly af-
fects the accuracy of fine-grained recognition); Fourthly, the
positive and negative transfers between different datasets is
ignored. The above challenges greatly hinder the applica-
tion of FGVC algorithms in practice.

A key solution to solve the challenges is to jointly train
an erudite FGVC model with all training data from dif-
ferent datasets, as shown in Figure 1. However, our pilot
study found that a vanilla erudite model fails to make accu-
rate predictions because both positive and negative transfer
occurs between different datasets. Specifically, after joint
training, although each dataset’s overall distribution of fea-
tures almost always becomes better (i.e., larger inter-class
variance and intra-class similarity) than training alone, it
becomes clear that only some categories get a better feature
representation, and others get a worse feature representa-
tion. At the same time, the boundaries between different
datasets sometimes become more blurred, confounding the
model’s predictions between them. Unfortunately, negative
transfer dominates in practice, resulting in a significant drop
in the test accuracy of the model on each dataset compared
to training alone.

To make the erudite model more accurate, in this paper,
we propose a feature disentanglement module and a fea-
ture re-fusion module to balance the positive and negative
transfer between different datasets. In detail, we decouple
the deep features through many dataset-specific feature ex-
tractors to obtain dataset-specific features, thus reducing the
negative transfer. However, after decoupling the features,
we need to know which dataset-specific classifier to use at
the inference stage (but we cannot access the coarse-grained
label of an object), and lost the positive transfer between
datasets. Therefore, inspired by the mixture of experts
(MoE) [26], we propose a gating-based feature re-fusion
module to channel-wise re-fuse the dataset-specific features
to facilitate positive transfer between different datasets. Fi-
nally, we obtain features with higher inter-class variance
and intra-class similarity while maintaining positive trans-
fer and suppressing negative transfer between datasets.

Meanwhile, an advantage of joint training with many
different datasets is that we have more training data.
Although the feature representations should be dataset-
specific, salient feature localisation should be dataset-
agnostic. Therefore, we can take full advantage of the in-
creased training data to train the model to locate many dif-
ferent discriminative regions. Naturally, we can use a tradi-
tional spatial attention layer to locate regions that are useful

for FGVC. However, directly applying a traditional spatial
attention layer fails to work well due to domain-shift when
training on different datasets [21, 28, 48]. To address this
issue, we propose a meta-learning based spatial attention
layer that drives the model to acquire a dataset-agnostic spa-
tial attention that enhances the models’ localisation ability
to further increase performance.

We demonstrate our resulting framework on 11 different
mixed-datasets built on four different FGVC datasets, and
show that it can easily be combined with existing FGVC
methods to obtain state-of-the-art results.

2. Related Work
2.1. Fine-grained Visual Classification (FGVC)

Increasing inter-class variance and intra-class similar-
ity is the central challenge of FGVC [42]. Current deep
learning-based FGVC methods fall into two main cate-
gories. The first caterogy of approaches explicitly localise
fine-grained visual regions and subsequently fuse the lo-
calised regions to perform fine-grained classification [42,
44, 50]. The second category is implicit approaches, which
use higher-order feature representations [22, 47], end-to-
end feature encoding [8, 13, 32, 33] or specially designed
loss functions [6,14,23,39] to drive the model to implicitly
discover fine-grained visual regions that reflect subtle dif-
ferences and explore the relationships between them. Re-
cently, Chang et al. [7] extended the traditional FGVC to
a multi-granularity visual classification task and achieved
state-of-the-art results by feature disentanglement and re-
inforcement. Choudhury et al. [9] tried to loosen the
need for annotation information further and explored using
Wikipedia for fine-grained recognition without any annota-
tions. Meanwhile, Yang et al. [41] incorporates geograph-
ical and temporal information into the deep model to im-
prove performance.

Different from the above methods, this paper does not
focus on improving performance on a particular FGVC
dataset where the coarse grained category is always consid-
ered known. Instead we focus on how to train a model on a
combined dataset of multiple datasets such that it can make
predictions in the combined label-space, without assuming
coarse-gradined category annotation during inference.

2.2. Joint Training of Multiple Datasets

Several studies have tried to combine several different
datasets for joint training [16, 29, 37, 46, 49]. While this po-
tentially benefits from more data for representation learn-
ing, the challenge is eliminating the potential conflicts and
negative between datasets which can outweigh the bene-
fits of joint training in practice. Kim et al. [19] attempted
to train several object segmentation datasets jointly, pro-
posed a gradient conflict loss for locating conflicting label
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Figure 2. Performance differences (∆ (%)) between multi-dataset
training vs. training each dataset alone. Subplots indicate target
datasets and bars correspond to extra data used for training.

spaces, and mitigated this problem using class-independent
binary cross-entropy loss. Zhao et al. [46] trying to train
a single object detector predicting over the union of all
the label spaces, and using the pseudo labelling approach
to integrate the data from different datasets. Almazán et
al. [1] further combined joint training of multiple datasets
with self-supervised learning. A strong pre-training model
was used to generate pseudo-labels for unlabelled images in
each dataset, leading to improved zero-shot retrieval.

Following these works, we extend the vision of joint
training of multiple datasets to the field of FGVC. In con-
trast to these methods, as different FGVC datasets belong
to different coarse-grain labels with disjoint fine-grained la-
bels, we cannot simply achieve positive transfer between
datasets in the label space as in the previous approach.
The key challenge of the joint training of multiple FGVC
datasets is managing positive and negative transfer between
dataset-specific features.

3. Pilot Study

In this section, we first define and analyse a baseline
method (a vanilla erudite model) for joint training of mul-
tiple datasets. The results show that positive and negative
transfers co-occur when different datasets are mixed for
training.

3.1. Notations and definitions

Suppose we have N different FGVC datasets: {Dn}Nn=1,
where Dn = {xn, yn}, xn are the samples of the nth

dataset, and yn are their corresponding ground truth. And
D = {x, y}, where x is the union of all datasets samples
(x ∈ {x1 ∪ . . . ∪ xN}), and y is the joint label-space of all
datasets (y ∈ {y1 ∪ . . . ∪ yN}).

3.2. Baseline method

To enable the model can make predictions across dif-
ferent fine-grained label spaces, the most straightforward
method is to train a feature extractor F(·) and a classifier
G(·) with the mixed data from different datasets as

Loss(·) = L(G(f), y), f = F(x), (1)
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Figure 3. Feature visualisation by t-SNE [34] after single dataset-
learning, vanilla multi-dataset joint learning and our method. Sub-
plots indicate training data and evaluation data for plotting: D1 →
D1 indicates single dataset training and evaluation on dataset D1,
while D12 → D1 indicates training on D1 +D2 and then evalu-
ating t-SNE on D1. In each sub-figure, colours indicate different
classes.

where L(·) is the cross entropy loss, x ∈ D, and the goal is
to make predictions G(F(·)) in the union label-space.

3.2.1 The baseline method is all we need?

Datasets In this section, we select all pairs the four datasets
(CUB-200-2011 (D1) [36], Stanford Cars (D2) [20],
FGVC-Aircraft (D3) [25], and Flowers-102 (D4) [27]) to
form six different datasets (e.g., D12 = {D1, D2}, please
see Section 5.1 for details) to evaluate the performance of
the baseline. Please refer to Section 5.2 for training details.
Evaluation The performance of the baseline method is
evaluated by the difference in prediction accuracy between
multiple datasets trained together and each dataset trained
alone as

∆ = acc(Dn)− ãcc(Dn), (2)

where acc(Dn) indicates the model’s performance of Dn

after Dn joint training with other datasets, and ãcc(Dn) in-
dicates the model’s performance when trained alone.
Results From the Figure 2, we can see that: (i) a signifi-
cant drop in the model’s prediction accuracy regardless of
which dataset the D1 was trained jointly with, e.g., a maxi-
mum drop of 4.17% (D13), as shown in Figure 2a. A similar
phenomenon can be observed in Figure 2d. (ii) the perfor-
mance degradation is less when the D2 are trained jointly
with other datasets and is improved in the joint training with
D4, as shown in Figure 2b. A similar phenomenon can be
observed in Figure 2c. Considering (i) and (ii) together, we
see that both negative and positive transfer can occur when
jointly training multiple datasets. However, negative trans-
fer is usually more significant than the positive transfer.
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CUB-200-2011 (D1) Stanford Cars (D2)

Metric Single♭ Baseline♭ Ours♭ Baseline† Ours† Metric Single♭ Baseline♭ Ours♭ Baseline† Ours†

SC (↑) 0.127 0.150± 0.120 0.163±0.021 − − SC (↑) 0.199 0.281± 0.064 0.350±0.026 − −
CHI (↑) 419.7 420.8± 42.02 495.6±36.61 − − CHI (↑) 753.6 994.4± 121.9 1409±47.12 − −
DBI (↓) 3.909 3.757± 2.236 3.642±0.236 − − DBI (↓) 4.175 2.548± 0.369 2.243±0.215 − −
Positive (↑) − 86.33± 4.041 120.0±2.0 − − Positive (↑) − 111.67± 4.059 123.7±15.04 − −
Negative (↓) − 113.7± 4.041 80.0±2.0 − − Negative (↓) − 84.33± 4.509 72.33±15.04 − −
MMD (↑) − − − 5095± 1101 5572±312.5 MMD (↑) − − − 4781± 1105 5406±953.4

FGVC Aircraft (D3) Flowers-102 (D4)

Metric Single♭ Baseline♭ Ours♭ Baseline† Ours† Metric Single♭ Baseline♭ Ours♭ Baseline† Ours†

SC (↑) 0.271 0.299± 0.042 0.359±0.016 − − SC (↑) 0.642 0.533± 0.004 0.590± 0.005 − −
CHI (↑) 515.0 565.9± 78.25 651.3±52.44 − − CHI (↑) 2288 2033.6± 93.2 2354±183.0 − −
DBI (↓) 3.246 2.427± 0.357 2.170±0.289 − − DBI (↓) 0.837 1.160± 0.083 0.955± 0.068 − −
Positive (↑) − 67.33± 7.506 70.33±1.528 − − Positive (↑) − 54.0± 4.582 63.0±1.732 − −
Negative (↓) − 32.67± 7.506 29.67±1.528 − − Negative (↓) − 48.0± 4.583 39.0±1.732 − −
MMD (↑) − − − 5097± 478.5 5692±588.0 MMD (↑) − − − 4061± 597.4 4874±462.4

Table 1. Evaluation of the feature distribution of test samples after joint training. ♭: denotes the distribution of samples within each
individual dataset, and †: represents the distribution of samples between any two datasets. Underline indicates the best results.

In addition, we can see that: (i) the positive and nega-
tive transfer between any two datasets is asymmetric: take
the D1 as an example: when mixed with the D3, its perfor-
mance dropped by 4.17%, but the performance of the D3

dropped by only 0.57%. (ii) Datasets of non-rigid objects
(D1 and D4) are more vulnerable to negative transfer than
rigid object datasets (D2 and D3).

3.3. Positive and negative transfer

In this section, we take D12 as an example to analyse
why a positive or negative transfer occurred.

The central challenge of FGVC is obtaining a feature
representation with large inter-class variance and intra-class
similarity. Therefore, we first visualised the trained features
through t-SNE [34] to analyse the intra-class and inter-class
variance. Since showing all ∼ 200 classes simultaneously
is hard, we use the hierarchical label structure of FGVC
datasets in [7] to visualise 30 classes for D1 and 35 classes
for D2. The selected classes all belong to the same parent,
and are thus particularly difficult to distinguish.

From the Figure 3, we can observe: Positive transfer:
(i) After joint training, the inter-class variance of D2 is in-
creased significantly (compare Figure 3d and Figure 3e).
Negative transfer: after joint training, the inter-class sim-
ilarity of the D1 is increased significantly (compare Fig-
ure 3a and Figure 3b) and led to worse generalisation per-
formance ( 78.31% (Single D1 → D1) vs. 75.32% (Ours
D12 → D1)). Please refer to Section 5.3 for a detailed anal-
ysis about Ours.

In addition, we have calculated intra-class similarity and
inter-class variance quantitatively, as shown in Table 1.
Specifically, we use three metrics: SC: Silhouette Coef-
ficient [30], CHI: Calinski-Harabasz Index [4], and DBI:
Davies-Bouldin Index [10], where the larger SC and CHI,
and the smaller DBI indicate larger intra-class similarity
and inter-class variance. By comparing Single (train each
dataset alone) and Baseline (joint training), we can see that
for most datasets, regardless of which dataset is mixed to-

gether results in a better feature representation. The positive
transfer between datasets is fully validated. We have also
analysed the positive and negative transfers at the category
level through per-class classification accuracy improvement
relative to the Single. Specifically, we use two metrics: Pos-
itive and Negative. Positive denotes the number of classes
that increases (and unchanged) accuracy after joint training.
Negative denotes the number of classes that reduces accu-
racy after joint training. As we can see from the Table 1,
when training the dataset jointly, both positive and negative
transfers occur, and the relative proportions of positive and
negative transfers are different in different datasets. Over-
all, the negative transfer is more severe. This phenomenon
is consistent with Figure 2 and Figure 3. Furthermore, we
have measured the distance between any two datasets by
MMD: Maximum mean discrepancy [3], please see Sec-
tion 5.3 for a detailed analysis.

4. Methodology

Eliminating the negative transfer and boosting the posi-
tive transfer between different datasets is the key to obtain a
more accurate and erudite FGVC model. In Section 4.1, we
first discuss our proposed feature disentanglement module
which decouple the features through dataset-specific feature
extractors to alleviate negative transfer. In Section 4.2, we
then discuss our proposed refusion module which re-fuse
the dataset-specific features through a gating-based feature
re-fusion module to enhance the positive transfer between
datasets. Finally, we discuss our proposed meta-learning
based dataset-agnostic spatial attention layer in Section 4.3.
Figure 4 depicts our framework with proposed modules.

4.1. Feature Disentanglement Module

As analysed in Section 3, learning a single dataset-
agnostic feature introduce a severe negative transfer prob-
lem. Therefore, we first decouple the mixed feature em-
beddings into different dataset-specific features, to elimi-
nate the negative transfer between different datasets.
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datasets as an example (i.e., N = 3). The dataset-specific classifiers (G1, G2, and G3) are only used in the training stage.

We first obtain dataset-specific features {f∗
n}Nn=1 using

multiple dataset-specific projection heads {mn(·)}Nn=1 and
constrain the task-specific features to be discriminative by
using dataset-specific classifiers {Gn(·)}Nn=1:

Lossaux(·) =
1

N

N∑
n=1

L(Gn(f
∗
n), y

n),

f∗
n = mn(fn), mn(·) = ReLU(BNn(Convn(·))),

(3)

where fn denotes the features belong to the nth dataset,
after disentangling from their common encoding fn =
F(xn), xn are the samples of the nth dataset. Convn(·)
is used to extract the dataset-specific features of the nth

dataset and is a 1× 1 convolution layer with both input and
output channels the same as the channels of fn, BNn(·) is
the batch normalization layer [18], ReLU is the non-linear
activation function, L(·) is the cross entropy loss. Gn(·) is
used only during the training stage, and will be discarded in
the inference stage.
4.2. Feature Re-fusion Module

The feature disentanglement alleviates the negative
transfer effect due to the use of dataset-specific features,
but we also lose the advantage of positive transfer at the
same time. Also, we we cannot easily decide which dataset-
specific feature during testing, as the coarse-grained label is
unknown during the inference time.

To address the above issues, we propose a gating-based
channel-wise feature re-fusion module that learns how to
fuse the feature array for use with a common classifier. We
define the re-fused features as F = {Fc}Cc=1 defined by

Fc =

N∑
n=1

Softmax(FC(Cat({f∗
n,c}Nn=1)) · ({f∗

n,c}Nn=1)),

(4)

where f∗
n,c denotes the cth channel of f∗

n, c ∈ [1, C], C
denotes the number of channels, N denotes the number of
datasets, Cat(·) denotes the concatenation of multiple fea-
tures at channel level, FC(·) denotes the fully connected
layer with output dimension equals to N .

Finally, the fused features F are passed into the joint
classifier G(·) to predict a joint classification result. The
loss function is formulated as

Lossmain(·) = L(G(F ), y), (5)

where L(·) is the cross entropy loss.
Therefore, the overall optimisation objective is

Lossall(·) = Lossmain(·) + Lossaux(·). (6)

In summary, the feature re-fusion module learns to pre-
dict the set of fusion weights with which to fuse the feature
ensemble {f∗

n}. These fusion weights are trained so as to
optimise performance of the joint label-space classifier us-
ing the fused features (Eq 5).

4.3. Dataset-agnostic Spatial Attention Layer

In this section, we aim to take full advantage of multi-
dataset training data, given that localisation is dataset ag-
nostic. We propose a meta-learning based dataset-agnostic
spatial attention layer that can be used across different
datasets for localisation.
Vanilla Spatial Attention Layer A key to the FGVC task
is to localise different fine-grained regions for recogni-
tion [38]. Therefore, similar to self-attention, we first pro-
pose a multi-head spatial attention layer for the model to
focus on different visual regions.

The channels in the feature represent different pat-
terns [31]. To obtain different feature regions, referring
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to the set-up in the previous work [35], we first divide
the deep features F(x) into 8 groups at the channel wise:
F(x) = {groupk}8k=1, where groupk ∈ F

C
8 ×H×W , C is

the channel numbers of the deep features F(x), H and W
are the height and width for each channel. Subsequently,
the grouped features are fed into their corresponding spatial
attention layers to obtain spatial attention respectively as

f = Cat({Sigmoid(Convk(groupk)) · groupk}8k=1),
(7)

where each Convk(·) is 1 × 1 convolution layer (the input
channel is C

8 and the output channel is 1). Cat(·) denotes
the concatenation of multiple features at channel level.

As mentioned earlier, both the training and test data con-
tain data from multiple datasets. The vanilla spatial atten-
tion layer cannot work well due to potential conflicts be-
tween different datasets. Therefore, similar to [21], we use
the model-agnostic meta-learning [15] to optimise the pa-
rameters of the spatial attention layer. Finally, we obtained
a dataset-agnostic spatial attention layer so that the potential
conflicts can be better handled.
Meta train In the training process, the training data for each
mini-batch is a mixture of data from different datasets. We
randomly select the data from one dataset as the meta-test
set (Dtest

meta = {xtest
meta, y

test
meta}) and the rest of the data as

the meta-train set (Dtrain
meta = {xtrain

meta , y
train
meta }). In addition,

we use meta-learning only to optimise the parameters of the
spatial attention layer. Thus, the loss function of the meta-
train is

Losstrainmeta =Lossall(θ;D
train
meta ), (8)

where θ means the parameters of the spatial attention layer.
Therefore, the gradient of θ with respect to Losstrainmeta (·) is
∇θ, and the parameters of the spatial attention layer will be
updated after optimisation to θ′ = θ − α∇θ, where α is the
learning rate.
Meta test In each mini-batch the model is also virtually
evaluated on the meta test set from a different dataset. The
loss for the adapted parameters on the meta-test data is

Losstestmeta(·) =Lossall(θ
′;Dtest

meta), (9)

where θ′ means the updated parameters from meta-train.
This means that for optimisation with Losstestmeta(·), we will
need the second derivative with respect to the θ.
Summary The meta-train and the meta-test are optimised
simultaneously, so the final objective is

Lmeta(·) =Losstrainmeta (·) + Losstestmeta(·). (10)

4.4. Summary

Since equation 10 requires a second-order derivative and
is optimised with different data and parameters with equa-
tion 6, for each mini-batch, we adopt a two-stage approach
for the optimisation of the parameters of the model.

Stage I: we train the feature extractor, the feature disentan-
glement and re-fusion modules, and the classifier with

Loss(·) = Lossall(Θ), (11)

where Θ denotes the parameters of the whole model, ex-
cluding the parameters of the spatial attention layer.
Stage II: we train the dataset-agnostic spatial attention layer
with

Loss(·) = Lmeta(θ), (12)

where θ means the parameters of the spatial attention layer.

5. Experiments Setting
5.1. Datasets

We consider four widely used FGVC datasets to evalu-
ate the performance of the proposed method in a scenario
where multiple datasets are trained jointly: D1: CUB-
200-2011 [36] (contains 200 classes, 5994 for training and
5794 for test), D2: Stanford Cars [20] (contains 196
classes, 8144 for training and 8041 for test), D3: FGVC-
Aircraft [25] (contains 100 classes, 6667 for training and
3333 for test), and D4: Flowers-102 [27] (contains 102
classes, 2040 for training and 6149 for test).

In these four datasets, D2 and D3 are relatively similar in
terms of dataset gap (both datasets are vehicles). While D1

and D3 are similar in terms of object shape (e.g., birds and
airplanes have heads and wings), thus D1 and D3 can be
used to evaluate the model performance under mixed train-
ing of two datasets with similar object shapes. In particular,
D12 denotes a mixture of D1 and D2, D123 denotes a mix-
ture of D1, D2, and D3, and D1234 denotes a mixture of
D1, D2, D3, and D4. Therefore, we totally have 11 dif-
ferent datasets (nCr(4, 2)+nCr(4, 3)+nCr(4, 4), where
nCr calculates the number of unique ways to select r from
n). In summary, we hope that the different combinations of
the four datasets described above will adequately simulate
the situation in a real-life scenario.

5.2. Training Details

The number of the training samples varies significantly
between different datasets (from 2040 to 8144). The mixing
of different datasets for training will cause a long-tail dis-
tribution problem, which could affect the performance eval-
uation. Therefore, we use a down-sampling approach [40]
to alleviate the long-tail distribution problem in the train-
ing process. Specifically, we sample the same amount of
data from different datasets, and mix them as training data
per mini-batch (e.g., 16 images per dataset in a mini-batch).
We adopt ResNet-50 [17] as our backbone feature extractor
and initialise it with ImageNet [11] pre-trained weights. All
our proposed modules are initialised randomly. The image
input is resized to 224 × 224. We adopt Momentum SGD
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Dataset Single Baseline Baseline+ Baseline++ Ours OursPCGrad OursPMG

D12 83.63 82.17 83.31 82.89 83.94 83.38 84.93
D13 83.15 80.84 82.06 82.22 83.35 82.55 84.18
D14 86.43 83.76 85.81 85.97 86.76 86.00 88.13
D23 88.55 87.92 87.82 87.23 88.74 88.14 89.23
D24 91.89 90.61 91.14 91.31 91.66 91.30 92.43
D34 91.28 89.62 90.73 90.55 91.52 90.76 91.60
Avg. 87.50 85.82 86.81 86.69 87.66 87.02 88.41
D123 85.10 84.13 84.65 84.04 84.83 84.58 85.61
D124 87.32 84.98 86.86 86.43 87.48 87.07 87.73
D134 86.99 84.80 86.00 85.52 86.88 86.45 87.70
D234 90.61 89.56 89.65 89.58 90.46 89.93 90.85
Avg. 87.50 85.87 86.79 86.39 87.41 86.99 87.98
D1234 87.49 85.54 86.54 86.06 87.45 86.86 88.08

Table 2. Comparisons with different baselines (ācc(%)).
Underlining indicates the best results.

as our optimiser and cosine annealing [24] as our learning
rate scheduler. The initial learning rate is 0.1 and gradually
decay to 0 over 100 epochs. The backbone feature extrac-
tor has a 10× smaller initial learning rate (i.e., 0.01). We
adopt common data augmentation techniques such as ran-
dom horizontal flips and random crops. Note that we only
have access to the coarse-grained labels (e.g., car, bird) of
the sample during the training phase. Unless mentioned oth-
erwise, we do not have the coarse-grained labels of the test
samples during the inference phase.

5.2.1 Evaluation Protocol

In this paper, we use Arithmetic Mean (ācc =
1
N

∑N
n=1 accn) to evaluate the model’s performance, where

accn is the test accuracy of the nth test dataset, n ∈ [1, N ],
and N is the total number of the test datasets.

5.2.2 Comparison methods

Single denotes that each dataset is trained separately. In
addition, we trained a coarse-grained classification model
to select the corresponding fine-grained model from the
FGVC model zoo. Baseline denotes directly mixing data
from different datasets to train the model (see Section 3.2
for details). Baseline+ denotes our proposed method with-
out the dataset-agnostic spatial attention layer. Baseline++
denotes our proposed method without meta-learning. Ours:
denotes our proposed method. To evaluate the effective-
ness of our meta-learning strategy we also adopt another
SOTA method, PCGrad [43], to optimize the spatial atten-
tion layer. This is denoted OursPCGrad. PCGrad handles
the gradient conflicts between datasets by projecting a task’s
gradient onto the normal plane of the gradient of any other
task that has a conflicting gradient. Finally, OursPMG rep-
resents our proposed method on top of the state-of-the-art
FGVC method PMG [12].

5.3. Results and Analysis

From Table 2, we can see that: (i) With our proposed fea-
ture disentanglement and re-fusion modules (Baseline+),

O
ur
s
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e+
+
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ri
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l

Figure 5. We highlight the supporting visual regions for attention
layers of two compared models. The red circles denote the exclu-
sive visual regions that Ours focus on.

the model performance is significantly improved over Base-
line. This validates the effectiveness of our proposed mod-
ules. (ii) When mixing two datasets for training, Base-
line++ achieves comparable results to Baseline+. How-
ever, when the number of mixed datasets is more than
three, the performance of Baseline++ decreased signifi-
cantly (e.g., 86.0% to 85.52% on D134). This suggests
that the vanilla spatial attention layer cannot work well un-
der the joint training of multiple datasets. (iii) With meta-
learning strategy on the spatial attention layer, Ours obtain
performance gains in all datasets as compared to Baseline+
(e.g., 86.0% to 86.88% on D134). This validates the pos-
itive role of meta-learning to train a dataset-agnostic lo-
calisation module. (iv) Although performance gains were
obtained after training the spatial attention layer using PC-
Grad (OursPCGrad), the gains is smaller than that of Ours.
This phenomenon suggests that our meta-learning strategy
handles the gradient conflicts problem caused by multiple
data distributions better than PCGrad. (v) Even against the
Single with more than 3× the computational complexity
of Ours, Ours still comparable with it, which validates
the effectiveness of our proposed method. (vii) When the
proposed method is combined with traditional FGVC al-
gorithm (i.e., PMG [12]), the model’s performance is fur-
ther improved, this validates the flexibility of the proposed
method as a plugin.

Furthermore, from the Table 1 and Figure 3, we can
see that: (i) Our proposed method has achieved the best
results on the metric SC, CHI, and DBI, which indicate
that the proposed method obtained better feature represen-
tations (i.e., large inter-class variance and intra-class simi-
larity) in most datasets. (ii) The proposed method can effec-
tively enhance the positive transfer (compare Figure 3e and
Figure 3f) and eliminate the negative transfer (compare Fig-
ure 3b and Figure 3c), which led to better generalisation per-
formance. (iii) The proposed method has achieved the best
results on the metric Positive and Negative, which provides
ample evidence for the conclusion of (ii). (iv) The proposed
method obtains the best results on the metric MMD, which
indicates lower inter-dataset confusion.
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Two Datasets Three Datasets Four Datasets

Single 8.24/73.88 8.24/98.54 8.24/123.2

Baseline 4.12/24.77 4.12/24.82 4.12/24.87

Ourstrain 4.33/30.54 4.38/31.96 4.42/33.84

Ourstest 4.22/29.23 4.28/30.59 4.33/32.48

Table 3. Computational complexity and number of parameters
(MACs (G)/ Params (M)).

6. Future Analysis
6.1. Feature Visualisation

We further carry out the model visualisation with D12 to
show that the spatial attention layer under Baseline++ and
Ours captures different regions that are useful for FGVC.
From Figure 5, we can see that the visual regions Ours
finds are more discriminative than the Baseline++, which
demonstrates the meta-learning’s positive role in learning a
dataset-agnostic spatial attention layer.

6.2. Feature Re-fusion Module

We further analyse how the feature re-fusion module
works (take D24 as an example). When the input data is
D2, the feature re-fusion module tends to select the chan-
nels that belong to D4-specific features (54.4±21%). When
the input data is D4, the feature re-fusion module tends to
select features that belong to itself (54.4±21%), rather than
D2-specific features. The above phenomenon is consistent
with the findings in Section 3.2.1: the positive and nega-
tive transfer between any two datasets is asymmetric (e.g.,
D4 has a significant positive transfer to D2, and D2 a has a
significant negative transfer to D4).

6.3. Computational Complexity

In this section, we use the number of Multiply Accumu-
late Operations (MACs) to measure models’ computational
complexity and the number of parameters (Params) to mea-
sure the models’ size. With the same accuracy, models with
low MACs and Params are more efficient. From Table 2
and Table 3, we can see that: (i) Although the MACs and
Params of our proposed method are much lighter than that
of the Single, Ours still obtained comparable results to Sin-
gle. (ii) Compared to Baseline, Ours gains over 2% per-
formance on almost every dataset with a slight increase in
MACs and Params. (i) and (ii) verify that the proposed
method is efficient and accurate.

6.4. Why not use multi-task learning?

Multi-task learning (MTL) [45] aims to leverage com-
monality across several tasks to improve the performance
on all tasks. Conventional multi-task learning shares an
encoder and learns task-specific classifier/decoder heads.
Without the knowledge of the coarse-grained class during
inference, one cannot select task-specific heads. Thus our

problem setting requires classification into the joint-label
space of all tasks.
Hierarchical multi-task learning An alternative solution
is to construct a hierarchical multi-task learning, where
we first determine the coarse-grained category of the sam-
ple belongs and subsequently select its corresponding fine-
grained classifier to recognise it. In other words, we have
one feature extractor, one coarse-grained classifier, and N
task-specific classifiers.
Results We evaluated the hierarchical multi-task learning
with D12. The performance of the coarse-grained classi-
fier is 99.30%. However, the performance of the two fine-
grained classifiers was very poor (i.e., 26.5% on D1, 28.3%
on D2). We attribute this to the coarse-grained classifier
reducing the inter-class distance with each task [7]. For in-
stance, both “Flamingo” and “Gray-backed albatross” be-
long to the category “Birds”.

6.5. Limitations

This paper only considers the relationships between dif-
ferent FGVC datasets in the same domain (natural sce-
nario). In cross-domain scenarios (e.g., painting and sketch-
ing), it needs to be further explored whether positive and
negative transfers still co-occur between datasets.

7. Conclusion
We introduce the problem of joint multi-dataset FGVC.

This goes beyond traditional FGVC algorithms dedicated to
solving particular fine-grained datasets, and requires more
realistic inference in the joint label-space of all datasets,
without assuming the coarse grained label is given during
inference. To address this scenario, we train a single eru-
dite FGVC model across multiple fine-grained recognition
datasets. We analyse the challenges entailed in terms of
negative transfer dominating over positive transfer across
datasets, and propose a solution based on feature disentan-
glement and re-fusion modules to balance positive and neg-
ative transfer; as well as a dataset–agnostic spatial attention
layer to enhance the generalisation of the model on locali-
sation. The results across 11 different mix-datasets built on
four different FGVC datasets verify the effectiveness of our
method.
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