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Abstract

Although machines have surpassed humans on visual
recognition problems, they are still limited to providing
closed-set answers. Unlike machines, humans can cog-
nize novel categories at the first observation. Novel cate-
gory discovery (NCD) techniques, transferring knowledge
from seen categories to distinguish unseen categories, aim
to bridge the gap. However, current NCD methods assume a
transductive learning and offline inference paradigm, which
restricts them to a pre-defined query set and renders them
unable to deliver instant feedback. In this paper, we study
on-the-fly category discovery (OCD) aimed at making the
model instantaneously aware of novel category samples
(i.e., enabling inductive learning and streaming inference).
We first design a hash coding-based expandable recogni-
tion model as a practical baseline. Afterwards, noticing
the sensitivity of hash codes to intra-category variance, we
further propose a novel Sign-Magnitude dIsentangLEment
(SMILE) architecture to alleviate the disturbance it brings.
Our experimental results demonstrate the superiority of
SMILE against our baseline model and prior art. Our
code is available at https://github.com/PRIS-
CV/On-the-fly-Category-Discovery .

1. Introduction
Deep models are well known for beating humans in vi-

sual recognition [13]. However, this is just a victory of
specialist models over generalist humans – existing vision
recognition models are mostly closed-set experts. Given
a defined category set, huge datasets are gathered and an-
notated, and then, deep models trained with the annotated
data can easily handle such an in-category recognition due
to their great fitting ability. However, these models are ar-
guably only learning to memorize in that they are restricted
to the defined category set and are incapable of modeling
novel categories. Although paradigms like open set recog-
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Figure 1. Comparison of the conventional NCD setting and the
proposed OCD setting. (a) NCD adopts transductive learning and
offline inference. (b) OCD removes the pre-defined query set as-
sumption and conducts inductive learning and instant inference.

nition [9] aim to filter out the out-of-category samples, sim-
ply rejecting them is not satisfactory. For humans, visual
recognition is far beyond a closed-set problem – instead of
learning to memorize, we learn to cognize. In particular,
given samples containing novel categories, we can not only
tell which are novel but we can also tell which may share
the same novel category. E.g., even you have never seen
“hedgehogs”, you can easily realize that they differ from
other creatures you have seen before and realise that multi-
ple hedgehog images belong to the same category, even if
you don’t know the name.

To bridge the gap, a rising field named novel category
discovery (NCD) [11] attaching increasing attention. With
a labelled support set of seen categories and an unlabeled
query set containing unseen ones, NCD aims at cogniz-
ing unseen categories by splitting the query set into several
groups with the same latent category. As shown in Figure 1,
existing NCD works [7, 10, 15, 37] mostly fall into a trans-
ductive learning and offline inference procedure. Specifi-
cally, a visual feature encoder is first trained with the sup-
port set via supervised learning and the query set via unsu-
pervised or semi-supervised learning. After that, clustering

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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techniques are applied to the encoded visual features to ob-
tain category clusters.

Although convincing performance has been obtained,
two restrictive assumptions still hinder the real-world ap-
plication of NCD approaches under the current setting. (i)
Firstly, the query set is visible and required during train-
ing, which makes the model specialized to the pre-defined
query set and less capable of dealing with truly novel sam-
ples. (ii) Secondly, the query set is batch processed offline
during inference. Therefore these models are not practical
in online scenarios where new data occurs in a stream and
instant feedback on each instance is required.

To approach a more realistic scenario, we put forward
the problem of on-the-fly category discovery (OCD) that re-
moves the assumption of a pre-defined query set (Figure 1).
In particular, we keep the seen/unseen split of datasets, and
make samples of the unseen query set unavailable during
training and only individually visible during test. The goal
of OCD is learning to recognise seen categories and to cog-
nize unseen categories – both in an inductive manner that
can be applied online. We follow the setting of generalized
category discovery (GCN) [30] where both seen and unseen
categories appear in the query set.

Next, we introduce a new recognition paradigm for OCD
along with a baseline model. Instead of adopting cross-
entropy loss during training for fully supervised learning,
we choose supervised contrastive learning [16] that works
in embedding space. Thus, we directly optimize and ob-
tain discriminative visual features rather than probability
outputs within a fixed prediction space. To meet the need
for instant feedback, cluster-based techniques are no longer
practical during inference. To this end, we take the bina-
rized feature embeddings as hash-like category descriptors,
and samples with the same descriptor can be regarded as
sharing the same latent category. In this way, the model can
individually recognize each novel sample, like us humans.

Afterward, we observe a challenge of OCD – the hash-
like descriptor is extremely sensitive to intra-category vari-
ance, especially for fine-grained categories. E.g., for the
CUB-2011-200 dataset [31], ∼1500 different 12-dimension
hash codes are generated for ∼4000 birds from only 200
categories. To address this, we contribute a novel Sign-
Magnitude dIsentangLEment (SMILE) architecture to al-
leviate the negative influence of intra-category variance.
Specifically, we infer the signs and the magnitudes of fea-
ture embeddings with two separate branches and only the
sign branch is used during inference. The intuition be-
hind this is that, since deep neural features respond to ab-
stract semantics (e.g., colors, textures, shapes), the sign
branch should encode whether a semantic feature corre-
sponds to this category, and the magnitude branch indicates
the expression level of the semantic feature on the current
sample. In summary, the magnitude branch should model

intra-category variance, and the sign branch inter-category
variance. Experiments on three widely used classifica-
tion datasets and three fine-grained classification datasets
demonstrate the superiority of SMILE over our baseline and
prior art.

2. Related Work
Open-set Recognition A relevant pioneer of visual recog-
nition in real-world scenarios is open-set recognition
(OSR) [9] with a history of nearly a decade [26]. OSR
supposes novel categories appearing in the testing set and
aims at rejecting them during inference. At the very begin-
ning, Scheirer et al. [26] provided a preliminary solution for
OSR by introducing open space risk and proposing an “1-
vs-set machine” to define the open-set margin. Afterwards,
relevant research has mainly followed two trends of genera-
tive and discriminative models. For generative model-based
OSR [8, 17, 23], a generative model is often employed to
synthesize samples from unseen categories, and the open-
set decision boundary can be learned in a supervised man-
ner. As for discriminative model-based approaches, they
adjust the decision space by directly modeling the open-set
margin via SVM [3,27], sparse representation [35], distance
measurement [1], etc. However, current OSR models are
still limited to awareness of unseen categories, while we
NCD and OCD aim to take the further step of cognizing
them.
Zero-shot Learning Another relative of OCD is zero-shot
learning (ZSL) [21, 32, 33], which directly focuses on rec-
ognizing unseen categories. Similar to generalized cate-
gory discovery [30], a more realistic setting, generalized
zero-shot learning (GZSL) [24], where both seen and un-
seen categories are involved during test is also considered.
ZSL/GZSL approaches explicitly leverage sharing side in-
formation (e.g., word vectors [28], attributes [14]) across
seen and unseen categories to relate the past and the future.
NCD and OCD aim to implicitly transfer the concept of
category from seen to unseen data without relying on prior
novel category definition via side information.
Novel Category Discovery Han et al. [11] first formalized
Novel category discovery (NCD) and tackled this problem
via deep transfer clustering that simultaneously learns vi-
sual representation and conducts clustering. After that, Han
et al. [10] proposed a novel framework named AutoNovel
with three training stages. In particular, at the last stage,
a novel rank statistic technique was proposed to form pair-
wise pseudo labels for joint training on labelled and unla-
beled data. Zhao et al. [36] proposed a two-branch net-
work for learning both global and local features and adopted
dual-rank statistics. Furthermore, Jia et al. [15] applied
rank statistics on feature groups and designed a winner-
take-all hashing approach. In addition, Fini et al. [7] used
the Sinkhorn-Knopp algorithm for generating pseudo labels
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Figure 2. Illustration of the baseline model and the proposed SMILE. The baseline model uses one projection head that generates a feature
embedding fi for both supervised contrastive learning and hashing. In contrast, the proposed SMILE adopts a two-branch structure that
separately infers the sign and magnitude information of the feature embedding for supervised contrastive learning. And only outputs from
the sign head are hashed to form the category descriptor hi.

and then trained the model with both labelled and unlabeled
samples with a unified objective. Recently, Vaze et al. [30]
introduced a less constrained NCD setting where both seen
and unseen categories appear during test, and the category
number is unknown in advance. However, two limitations
still exist in the current setting: (i) transductive learning –
the model is limited to inference on a pre-defined query
set that must be available during training, and (ii) offline
evaluation – the model is incapable of instant feedback and
individual results are dependent on the overall query data
distribution. Therefore, this paper extends offline NCD by
proposing an inductive, online setting named on-the-fly cat-
egory discovery (OCD).

3. Methodology
3.1. Overview

In this paper, focusing on letting machines learn to cog-
nize unseen categories, we put forward the problem of on-
the-fly category discovery (OCD). Learning is conducted on
a closed labelled set, and then known and novel categories
should be recognised on-the-fly.

To start with, we define the data structure of OCD as
follows. The full data D consists of a support set DS for
training and a query set DQ for testing. We have DS =
{(xi, yi)}Ni=1 ∈ XS×YS and DQ = {(xi, yi)}Mi=1 ∈ XQ×
YQ, where xi denotes samples within the dataset and yi is
the corresponding labels. Note that, following the setting of
generalized category discovery (GCD) [30], the query set
DQ contains both seen categories and unseen categories,
i.e., YS ∈ YQ. The differences between OCD and GCD lie
in: (i) only the support set DS is used for model training,
i.e., inductive learning, and (ii) samples in the query set DQ

are individually inferred, i.e., instant feedback.

The methodology is organized as follows: in Section 3.2,
we first introduce a hash coding-based strong baseline for
OCD, and in Section 3.3, we further proposed a simple yet
effective Sign-Magnitude dIsentangLEment (SMILE) ar-
chitecture that encourages category-consistent hash coding.

3.2. Hash Coding-based Baseline Model

3.2.1 Expandable Prediction Space

Conventional visual recognition models can be formalized
as two coupled components: an encoder E(·) for feature ex-
traction and a classifier C(·) that projects extracted features
into the prediction space. Given a dataset D ∈ X × Y , for
any sample xi ∈ D, the model output can be written as

ŷi = argmax(C(E(xi))) ∈ [1, |Y |], (1)

where argmax(·) returns the category index with the high-
est probability. However, this architecture restricts the pre-
diction space to a closed set Y and cannot handle sample
with novel categories, e.g., (xj , yj) with yj /∈ Y .

Existing NCD models, can be roughly divided into two
parts: an encoder E(·) for feature extraction and a projection
head H(·) that projects extracted feature into a discrimina-
tive embedding space. Then, labels can be allocated to the
query samples via clustering techniques. Such a decision
process frees the model from in-category prediction. Thus
we follow this road to construct our baseline model.

For inductive training, we only use the labelled sup-
port data DS for learning H and E . As such we only
apply supervised contrastive learning [16] here. Letting
fi = H(E(xi)) be the feature embedding for xi, the op-
timization goal can be formulated as

Lsup
i = − 1

|Pi|
∑
p∈Pi

log
exp(fi · fp)∑|B|

j=1 1[j ̸=i]exp(fi · fj)
, (2)
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where B is the multi-view-augmented batch that contains
xi, Pi denotes the indices of other positive samples in B.

3.2.2 Instant Inference via Hash Coding

To achieve instant feedback, the widely used clustering
techniques in NCD are no longer practical. Therefore, to
form decision boundaries that can recognize both seen and
unseen categories, an intuitive choice is setting a thresh-
old as the minimum inter-category distance. However, such
metric-based decision-making is still impractical for infer-
ence on individual samples, and does not support cognizing
novel categories for which cannot form category prototypes.

To support online recognition of known categories and
the ability to cognize unknown categories, our novel so-
lution is to regularize the embedding space to a structural
hash space where decision boundaries naturally exist – sim-
ply letting each category correspond to a specific hash code.
For any sample xi, we can obtain its hash identifier by

hi = hash(H(E(xi))) ∈ {0, 1}L, (3)

where L is the length of hash codes and hash(·) is, for an
arbitrary vector a = [a1, . . . , al, . . . , aL],

hash(a) = [a∗1, . . . , a
∗
l , . . . , a

∗
L], a

∗
l =

{
1 al ≥ 0

0 al < 0
.

(4)
During test, we regard samples with the same hash code

as a cluster. Unlike existing clustering based solutions, this
algorithm can be applied on-the-fly as the inference for each
xi does not depend on the overall query data distribution.
We evaluate our hash-based clustering with standard NCD
metrics (see Section 4.1 for details). It is worth noting that
this hash-based decision space has a maximum number of
categories 2L. Still, it does make the model expandable to
unseen categories. The effect of code length L is discussed
in Section 4.3.

3.3. Sign-Magnitude Disentanglement

Although a hash coding-based network can make in-
ference on-the-fly, a limitation remains – the hash coding
is sensitive to intra-category variance, resulting in a large
number of non-existent categories being predicted. The
reason behind this is relatively straightforward – assuming
each dimension of features/hash codes stands for a specific
high-level semantic (e.g., the sharp mouths of hedgehogs),
it may not be consistently expressed for all samples (e.g.,
a curled hedgehog hiding its mouth). Ideal category hash
codes should represent the category-level semantics; how-
ever, features may respond to instance-level semantic ex-
pressions in practice.

To address this, we introduce Sign-Magnitude
dIsentangLEment (SMILE). After we hash the fea-
ture embeddings according to Equation 4, only the sign

information is kept for the final decision, while the magni-
tude information is discarded. By decoupling the feature
embedding into the sign and the magnitude part, then
ideally: (i) the sign part represents the inherent semantics
of the object’s latent category, while (ii) the magnitude part
indicates the instance-level expression of each semantic,
and (iii) the prediction of signs is independent of the
magnitudes. Based on this thinking, we propose a novel
sign-magnitude disentanglement that separately infers
signs and magnitudes of the feature embeddings to improve
category consistent hash coding.

Specifically, we introduce a two-branch architecture
where the projection head H(·) in the baseline model is
replaced with a sign-head HS(·) and a magnitude-head
HM (·) in parallel. For the sign-head, we equip it with a
sign activation function to discard magnitude information,
i.e., si = sign(HS(E(xi))). As for the magnitude-head,
we take the output’s absolute value to discard sign infor-
mation, i.e., mi = abs(HM (E(xi))). Afterwards, we take
their multiplication f̂i = si ⊗ mi as the final feature em-
bedding, where ⊗ denotes element-wise product.

During training, we use f̂i to calculate the supervised
contrastive loss Lsup

i . And only the output from the sign-
head is used for inference, i.e., the hash-based descriptor
is ĥi = hash(HS(E(xi))). In practice, we adopt the
smoothed version of sign(·) and abs(·) function for easier
gradient propagation as

sign∗(a) ≈ (ea×τ − e−a×τ )⊘ (ea×τ + e−a×τ ), (5)

abs∗(a) ≈ a⊙ (ea×τ + e−a×τ )⊘ (ea×τ − e−a×τ ), (6)

where a is an arbitrary vector, τ is a hyper-parameter that
controls the smoothness of two functions, ⊘ and ⊙ denote
the element-wise division and multiplication, respectively.
Note that when HS and HM share the same weights, f̂i

could degrade to fi.
In addition, as we use the smoothed sign func-

tion sign∗(·), we introduce an magnitude regularization
(inverse-L1 regularization) term Lreg

i = −|ĥi| to encour-
age |ĥi| to be close to 1 or −1, which also implicitly en-
courages the sign-head to be less sensitive to intra-category
variance. The total optimization goal is then

Ltotal
i = Lsup

i + αLreg
i , (7)

where α is a hyper-parameter that balances the effects of
two loss functions. The ablation studies about the effec-
tiveness of each component, the effects of different hyper-
parameters τ , and different α can be found in Section 4.3.

4. Experiment
4.1. Experiment Setup

Datasets Following the setup of GCD [30], we adopt six
datasets in our experiments, including three coarse-grained
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CIFAR10 CIFAR100 ImageNet-100 CUB CAR HERB19

|YS | 5 80 50 100 98 341

|YQ| 10 100 100 200 196 683

|DS | 12.5K 20.0K 31.9K 1.5K 2.0K 8.9K

|DQ| 37.5K 30.0K 95.3K 4.5K 6.1K 25.4K

Table 1. Statistics of datasets used in our experiments. Number of
categories |YS | & |YQ| and number of samples |DS | & |DQ|.

classification datasets: CIFAR10 [19], CIFAR100 [19],
Imagenet-100 [25], and three fine-grained classification
datasets: CUB-200-2011 [31], Stanford Cars [18], and
Herbarium19 [29]. Note that ImageNet-100 refers to a sub-
set of ImageNet with 100 categories randomly sampled.
The categories of each dataset are split into subsets of seen
and unseen categories. And 50% samples belonging to the
seen categories are used to form the support set DS for
training, and the rest form the query set DQ for testing. The
statistics of split datasets can be found in Table 1.
Models for Comparison Since the overall distribution of
the query set is unavailable, many previous approaches
are impractical under our instant inference setting, e.g.,
clustering-based approaches [30], pseudo-labelling via ex-
tended classifier [34], and pseudo-label allocation via
Sinkhorn-Knopp algorithm [7]. To demonstrate the superi-
ority of SMILE, we modify the following methods to meet
our setting for comparison:

(1) Baseline: Our simple hashing framework without
SMILE.

(2) Sequential Leader Clustering (SLC) [12]: SLC is a
classical clustering technique for scenarios where data come
in sequence. It owns the advantage that the cluster number
does not need to be defined in advance. We replace the hash
coding-based decision-making on our baseline with SLC as
a fair competitor.

(3) Meta-learning for Domain Generalization
(MLDG) [20]: Unlike the conventional NCD task that
leverages both the support and the query set for discrimi-
native feature learning, the proposed OCD is more like a
generalization problem – learning from seen categories and
then generalizing to unseen categories. Therefore, in this
paper, we adopt the model agnostic domain generalization
algorithm MLDG [20] as a competitor. In particular,
samples from different categories are split into meta-train
and meta-test domains at each training iteration, and then
we apply MLDG to our baseline model.

(4) Ranking Statistices (RankStat) [10]: Ranking
statistics are employed by AutoNovel [10] to measure sam-
ple relationships – belonging to the same category or not.
Specifically, it leverages the top-3 indices of feature embed-
dings as category descriptors, and samples with the same
top-3 indices are likelier to belong to the same category.
This meets our OCD setting and becomes a strong competi-
tor to our hash-based category descriptor. We keep the self-

supervised and fully-supervised learning stages for compar-
ison. We discard the third stage of joint optimization with
pseudo-labelled samples since the query set does not partic-
ipate in model training in the OCD setting.

(5) Winner-take-all (WTA) [15]: Considering the rank-
ing statistics may excessively focus on salient features and
overlook the holistic structure information. In [15], the au-
thors proposed winner-take-all hash as an alternative. In
particular, instead of using the global order of feature em-
beddings, WTA takes the indices of maximum values within
feature groups. Here we take the whole WTA codes as de-
scriptors for instant inference.
Implementation Details For fair comparison, we take
DINO [2] pre-trained ViT-B-16 [6] as the backbone network
(i.e., the encoder E(·)) for all models. We unified the fully-
supervised learning scheme for all methods as supervised
contrastive learning [16], as it performs better than linear
classifier used by some previous SOTA approaches (e.g.,
RankStat [10]). We fine-tune the final block of ViT-B-16
for all methods.

All methods are trained for 50 epochs on coarse-grained
datasets and 100 epochs on fine-grained datasets. For op-
timization, we use SGD with the momentum of 0.9, the
start learning rate of 0.01, and the cosine learning rate de-
cay schedule [22]. We take batch size |B| = 128 for all
methods, and hyper-parameter α = 3 and τ = 1 for SMILE
(related experimental results can be found in Section 4.3).

For the hash code length, we take L = 12 for all hash
coding-based models. It is worth noting that L = 12 does
not consistently yields the best results on different datasets,
but we keep this value the same since we do not know the
novel category number in advance. The effect of the code
length L is discussed in Section 4.3. Besides, to ensure
the prediction spaces of similar size, for RankStat, we set
the embedding dimension to 32 with top-3 indices being fo-
cused; for WTA, we use 48-dimension embeddings divided
into 3 groups1.
Evaluation Protocols This paper adopts two proto-
cols for evaluation termed Greedy-Hungarian and Strict-
Hungarian for comprehensive comparisons. The two pro-
tocols are used by Fini et al. [7] and Vaze et al. [30], re-
spectively, and their difference is clearly illustrated in [30].
During the testing phase, we regard samples with the same
category descriptor as a cluster. All clusters are sorted ac-
cording to their sizes. We only keep the top-|YQ| clusters,
and the rest clusters will be treated as misclassified. Af-
terwards, for Greedy-Hungarian, samples are first divided
into the “New” and “Old” sub-set by their ground-truth la-
bels, and then we calculate the accuracy of each sub-set
separately. Thus it provides an independent perspective of
model performance on the “New” and “Old” sub-set. As for

1The prediction space size of hash coding, RankStat, and WTA are
212 = 4096, C3

32 = 4960, and 163 = 4096, respectively.
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Method
CIFAR10 (%) CIFAR100 (%) ImageNet-100 (%) CUB-200-2011 (%) Stanford Cars (%) HERB19 (%)

All Old New All Old New All Old New All Old New All Old New All Old New

G
re

ed
y-

H
un

ga
ri

an

Baseline 64.82 94.47 49.99 40.36 50.94 19.20 34.38 76.52 13.20 22.63 29.58 19.16 16.12 23.86 12.37 14.72 22.88 10.33

SLC [12] 65.92 96.49 50.86 46.90 62.05 16.57 34.18 86.55 7.14 30.20 46.50 22.06 14.39 23.94 9.78 15.95 28.54 9.14

MLDG [20] 71.58 97.50 58.62 58.42 68.99 37.27 33.59 74.40 13.08 34.21 57.91 22.36 27.96 49.13 17.74 23.78 39.47 15.33

RankStat [10] 56.51 81.07 44.23 36.87 45.67 19.27 33.07 74.19 12.40 22.70 29.95 19.08 16.23 23.29 12.82 15.03 22.25 11.15

WTA [15] 65.38 87.98 54.08 44.09 55.52 21.24 33.12 75.82 11.66 23.78 30.51 20.42 18.34 26.29 14.51 16.18 23.21 12.39

SMILE (Ours) 78.17 99.27 67.62 61.31 70.71 42.48 39.91 87.07 16.22 41.11 67.65 27.84 33.35 58.41 21.25 28.36 45.56 19.11

St
ri

ct
-H

un
ga

ri
an

Baseline 43.53 56.21 37.30 37.82 48.75 15.96 31.49 72.92 10.68 21.09 26.19 18.54 15.43 23.04 11.74 13.95 22.19 9.51

SLC [12] 41.54 58.29 33.29 44.36 58.98 15.10 32.92 86.55 5.22 28.60 43.96 20.92 14.01 23.04 9.65 14.92 27.44 8.14

MLDG [20] 44.14 38.47 46.98 50.60 60.98 29.83 30.63 72.30 9.69 29.52 48.37 20.09 23.96 41.63 15.42 20.84 36.67 12.33

RankStat [10] 42.14 49.26 38.59 35.00 44.01 16.98 31.06 73.30 9.83 21.19 26.85 18.35 14.78 19.94 12.29 13.81 20.63 10.15

WTA [15] 43.12 34.52 47.42 40.83 52.89 16.72 30.84 72.92 9.68 21.93 26.93 19.43 17.09 24.37 13.59 14.62 21.21 11.07

SMILE (Ours) 49.86 39.86 54.86 51.59 61.55 31.69 33.78 74.22 13.45 32.24 50.89 22.91 26.15 46.65 16.25 22.90 39.29 14.09

Table 2. Comparison with other SOTA methods. The best results are marked in bold, and the second best results are marked by underline.

(b) CUB-200-2011(a) CIFAR100

Figure 3. Illustration of correct cognized samples versus total sam-
ples as data are input in stream form. Lines of red, green, and blue
represent the “All”, “Old”, and “New” accuracy, respectively. And
zones with the corresponding colours indicate the performance
margin between SMILE and the baseline.

the Strict-Hungarian, the accuracy of the whole query set
is first calculated, which prevents the situation that a clus-
ter is repeatedly used by the “New” and “Old” categories.
The accuracy calculation via Hungarian algorithm can be
formulated as

Acc = max
s(·)∈S(YQ)

1

|DQ|

|DQ|∑
i=1

1[ŷi = s(yi)], (8)

where yi is the ground truth label, ŷi is the predicted la-
bel decided by cluster indices, and S(YQ) is the set of all
permutations of ground truth labels.

4.2. Comparison with SOTA Methods

We conduct comparison experiments with the aforemen-
tioned competitors on all 6 datasets. The experimental re-
sults are reported in Table 2. Compared with the baseline
model, the proposed SMILE obtained a significant aver-
age improvement of 8.54%, which demonstrate the effec-
tiveness of our sign-magnitude disentanglement idea. Al-
though RankStat and WTA can also combat sample noises
by focusing on only top-ranking indices, they have not con-
sistently surpassed the baseline model, which suggests that

simply ignoring low response channels cannot eliminate the
effect of intra-category variance.

On the contrary, the classical domain generalization al-
gorithm MLDG obtained excellent results – the second-best
overall performance. This verifies our judgement that OCD,
in a sense, can be regarded as a generalization problem. In-
stead of domain generalization that transfers knowledge to
unknown domains, OCD requires the cognition ability can
be transferred to unknown categories. Therefore, we might
state that a possible direction for better solving OCD tasks
can be generalizable feature learning.

In addition, in Figure 3, we illustrate the real-time perfor-
mance on CIFAR100 and CUB-200-2011 as data are input
in stream form. The real-time performance gains are also
illustrated in the figure. We can find the model performance
is quite stable over different amounts of data – the relation
between the total input data percentage and the correct cog-
nized percentage is almost linear. It is intuitive as SMILE
conducts inductive inference and does not leverage the in-
put data to improve model performance. And, of course, an
unsupervised incremental learning process with knowledge
cumulation could be an interesting future direction.

Besides, it is worth noting that, despite the consistent
overall trends under the two evaluation protocols, excep-
tional cases also exist. E.g., SMILE achieves the best result
on CIFAR10 under the Greedy-Hungarian protocol but ob-
tains only 39.86% accuracy for the old category under the
Strict-Hungarian protocol. The reason behind this is that
too few categories in CIFAR10 make the model biased to
seen categories – when an old category and a new category
are clustered together, the Hungarian algorithm will allocate
this cluster to the new category for the best overall accuracy
since there are more samples from new categories in the test
set. Therefore, we adopt both protocols to understand these
exceptional cases better.

4.3. Ablation Studies

In this section, we conduct ablation studies on
CIFAR100 and CUB-200-2011, respectively, the typical

11696



S.-M. Disen. M. Reg.
CIFAR100 (%) CUB-200-2011 (%)

All Old New All Old New

% % 37.82 48.75 15.96 21.09 26.19 18.54

! % 43.94 51.43 28.97 24.93 29.34 22.72

% ! 42.05 53.92 18.31 21.48 26.74 18.85

! ! 51.59 61.55 31.69 32.24 50.89 22.91

Table 3. Ablation study on the sign-magnitude disentanglement
and magitude regularization. The best results are marked in bold.
S.-M. Disen. and M. Reg. stand for sign-magnitude disentangle-
ment and magnitude regularization, respectively.

(a) CIFAR100 (b) CUB-200-2011

Figure 4. Results with different hash code dimension L.

coarse-grained and fine-grained datasets.
Effectiveness of Each Components: The proposed SMILE
can be divided into two components: the sign-magnitude
disentanglement architecture and the magnitude regular-
ization. In this sub-section, we investigate the effective-
ness of each component and the benefit of their cooperation.
When the magnitude regularization works alone, we di-
rectly apply it to the projection head of our baseline model.
As shown in Table 3, each component and their combination
consistently boost model performance. And the interesting
point is that when they work alone, an average improve-
ment of 9.96% and 2.31% is respectively obtained; when
they work together, the average gain is 12.46%, which is
even more significant than the sum of two individual im-
provements. It indicates that their working mechanisms are
highly coupled – the magnitude regularization encourages
the sign head to ignore magnitude information, and the sign-
magnitude disentanglement ensures magnitude information
is kept for contrastive learning.
Effects of the Hash Code Length L: The code length L
is the most critical factor for hash coding-based models.
Under the setting of OCD, it directly decides the size of
prediction space (equal to 2L). An ample prediction space
means a better capability to handle large-amount categories
and finer representations with more details. On the con-
trary, a smaller L leads to more robust feature representa-
tions against intra-category variance.

Here we experiment with L varying from 6 to 20, as
shown in Figure 4. We can observe that the best perfor-
mance is obtained with different dimensions for seen and

unseen categories, even on the same dataset. The model
works better on unseen categories with a smaller L since
more robust feature embeddings are required for a better
generalization ability. In addition, we notice the overall per-
formance benefits more from large L on the coarse-grained
dataset, which may be because coarse-grained recognition
is less sensitive to the effect of the intra-category variance
than fine-grained recognition.

In other experiments, we take L = 12 for all datasets
instead of selecting the optimal choice. This is because the
code length L, which decides the size of prediction space,
directly relates to the number of unseen categories we have
no prior knowledge of in the OCD setting. And designing
an optimal code length estimation technique that works on
the support set may be a meaningful future direction.
Effects of the Hyper-parameter α: Hyper-parameter α
controls the contribution of the magnitude regularization
loss. As shown in Table 4, we experiment with α within
{1, 2, 3, 4, 5}. And the model performance is not that sensi-
tive with the amount of α – similar results are obtained with
α from 1 to 3. We take α = 3 for all experiments.
Effects of the Hyper-parameter τ : Hyper-parameter τ
controls the smoothness of the approximate sign(·) and
abs(·) function. We take the same τ for both two func-
tions to ensure their multiplication is still a linear function.
A higher τ results in sharper functions, which means bet-
ter disentanglement. Conversely, smoother functions with
lower τ facilitate gradient propagation. We experiment with
τ ∈ {0.2, 0.5, 1, 2, 5}, as shown in Table 5. We take τ = 1
for all other experiments.

4.4. Discussion

What defines the concept of “category”? The reader may
raise the question that different people may hold various
understandings about the word “category”, e.g., the same
bird can be “Flamingo”, “Phoenicopteridae”, and “Phoeni-
copteriformes” to people of different expertise about birds.
Then what defines the expertise level of OCD models? To
this end, we experiment on CUB-200-2011, and Stanford
Cars with the support set annotated at different granularity
levels2.

Experimental results are reported in Table 6, and three
expertise levels are expressed by “Novice”, “Erudite”, and
“Expert”. The “Expert” level annotations are what we gen-
erally use in fine-grained recognition, and we still evaluate
the model at this level on the query set. In addition, we
also report the number of categories we discovered (i.e., the
number of different hash codes). According to the results,
we can come to a very intuitive conclusion – the expertise
level of the OCD model is defined by the annotation level of

2We adopt the hierarchical labels in [4]. The CUB-200-2011 dataset
is annotated by three-level labels of “Order”, “Family”, and “Species”.
Stanford Cars is annotated into two-level labels by “Type” and “Model”.
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Hyper- CIFAR100 (%) CUB-200-2011 (%)
-parameter α All Old New All Old New

1 49.96 60.64 28.61 31.61 50.90 21.96
2 51.24 61.67 30.38 32.03 51.90 22.09
3 51.59 61.55 31.69 32.24 50.89 22.91
4 45.80 52.32 32.76 30.14 45.19 22.50
5 42.69 53.24 21.60 28.60 42.29 21.76

Table 4. Results with different Hyper-parameter α. The best results
are marked in bold.

Hyper- CIFAR100 (%) CUB-200-2011 (%)
-parameter τ All Old New All Old New

0.2 50.81 64.56 23.31 31.43 58.11 18.08
0.5 50.81 62.53 27.38 31.90 55.50 20.09
1 51.59 61.55 31.69 32.24 50.89 22.91
2 49.16 60.18 27.12 26.71 35.09 22.52
5 46.31 58.75 21.42 19.35 20.35 18.85

Table 5. Results with different Hyper-parameter τ . The best results
are marked in bold.

Expertise CUB-200-2011 (%) Stanford Cars (%)
Level All Old New Num. All Old New Num.

Novice 10.34 12.21 9.41 81 10.51 11.74 9.92 51
Erudite 16.30 16.94 15.98 308 N/A N/A N/A N/A
Expert 32.24 50.89 22.91 436 26.15 46.65 16.25 343

Table 6. Results when the support set is annotated with different granularity
levels. The best results are marked in bold. Num. stands for the inferred
category number.

Transfer Overall Transfer Overall Transfer Overall
Direction Acc (%) Direction Acc (%) Direction Acc (%)

P1 → G 7.61 P2 → P1 10.53 P1 → P2 7.71
P2 → G 8.81 G → P1 16.77 G → P2 13.92
G → G 33.78 P1 → P1 32.24 P2 → P2 26.15

Table 7. Results for different knowledge transfer scenarios with
one general field and two professional fields, ImageNet-100 (G),
CUB-200-2011 (P1), and Stanford Cars (P2).

the support set. In particular, the model performance signif-
icantly drops as the annotation level degrades because the
model trained on coarse-grained annotations cannot distin-
guish fine-grained categories. Besides, the number of dis-
covered categories also decreases, i.e., many fine-grained
categories are merged into the same category, which indi-
cates the degradation of the model’s expertise level.

Can we achieve cross-domain discovery? Similar to the
well-analysed NCD problem, the OCD relies on the learn-
ing and transferring of shared semantics from support to
query. A task with few shared semantics between the sup-
port and query set may be unsolvable. To test the limitations
of OCD, we evaluate with three datasets: CUB-200-2011
(P1) and Stanford Cars (P2) represent two separate profes-
sional fields, and ImageNet-100 (G) stands for a general
field. We synthesise four different knowledge transfer sce-
narios: (i) transferring within the professional fields (P1 →
P1 and P2 → P2), (ii) transferring across professional fields
(P1 → P2 and P2 → P1), (iii) transferring from professional
fields to general fields (P1 → G and P2 → G), and (iv) trans-
ferring from general fields to professional fields (G → P1

and G → P2). Note that we also report results of “G → G”
for comparison; however, as we assume the general field is
unique, there is no concept about “within the general field”
or “across the general field”.

Experimental results are shown in Table 7. We can
observe that the model performance significantly degrades
when we transfer knowledge across different professional
fields due to the limited high-level semantics they share,
e.g., it is hard to find common ground between birds and
cars. As for transferring knowledge from a general field
to professional fields, the results are slightly better but still
not satisfactory – although a general field stands a good
chance of covering semantics of professional fields, mod-
els trained for coarse-grained recognition are incapable of

cognizing fine-grained categories [4]. Similarly, transfer-
ring from professional to general fields also leads to worse
performance because they might only cover a small subset
of high-level semantics in the general fields.

These observations suggest that cognizing unseen cate-
gories is not a panacea. It echos the statement in [5] that
novel category discovery tasks should be designed follow-
ing a sampling in causality protocol, i.e., the seen and un-
seen categories should be collected in the same way; other-
wise, the task may tend to be theoretically unsolvable.

5. Conclusion
In this paper, we put forward a new and highly practical

visual recognition problem termed on-the-fly category dis-
covery (OCD). Meanwhile, an intuitive hash coding-based
baseline model is designed as a solution for OCD, which we
further improve with a simple yet effective sign-magnitude
disentanglement architecture. Comprehensive experiments
on 6 popular datasets verify the effectiveness of the pro-
posed method. Additionally, we also discuss the limitation
of OCD via experiments with multi-granularity support set
annotations and cross-domain support sets.
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