48 research outputs found

    Low-cost, in vivo microscopy

    Get PDF
    Please click Additional Files below to see the full abstract

    Towards long-tailed, multi-label disease classification from chest X-ray: Overview of the CXR-LT challenge

    Full text link
    Many real-world image recognition problems, such as diagnostic medical imaging exams, are "long-tailed" \unicode{x2013} there are a few common findings followed by many more relatively rare conditions. In chest radiography, diagnosis is both a long-tailed and multi-label problem, as patients often present with multiple findings simultaneously. While researchers have begun to study the problem of long-tailed learning in medical image recognition, few have studied the interaction of label imbalance and label co-occurrence posed by long-tailed, multi-label disease classification. To engage with the research community on this emerging topic, we conducted an open challenge, CXR-LT, on long-tailed, multi-label thorax disease classification from chest X-rays (CXRs). We publicly release a large-scale benchmark dataset of over 350,000 CXRs, each labeled with at least one of 26 clinical findings following a long-tailed distribution. We synthesize common themes of top-performing solutions, providing practical recommendations for long-tailed, multi-label medical image classification. Finally, we use these insights to propose a path forward involving vision-language foundation models for few- and zero-shot disease classification

    Visualization 1 Smartphone confocal microscopy video of human skin in vivo

    No full text
    The attached video of human skin in vivo was obtained with the smartphone confocal microscope. Frame rate is 4.3 fps and the image size is 430µm x 516 µm

    Two-dimensional physical habitat modeling of effects of habitat structures on urban stream restoration

    Get PDF
    River corridors, even if highly modified or degraded, still provide important habitats for numerous biological species, and carry high aesthetic and economic values. One of the keys to urban stream restoration is recovery and maintenance of ecological flows sufficient to sustain aquatic ecosystems. In this study, the Hongje Stream in the Seoul metropolitan area of Korea was selected for evaluating a physically-based habitat with and without habitat structures. The potential value of the aquatic habitat was evaluated by a weighted usable area (WUA) using River2D, a two-dimensional hydraulic model. The habitat suitability for Zacco platypus in the Hongje Stream was simulated with and without habitat structures. The computed WUA values for the boulder, spur dike, and riffle increased by about 2%, 7%, and 131%, respectively, after their construction. Also, the three habitat structures, especially the riffle, can contribute to increasing hydraulic heterogeneity and enhancing habitat diversity

    Investigation of sub-stoichiometric MoOx hole-selective contacts for rear junction passivating contact silicon solar cells

    No full text
    Carrier-selective contacts play a crucial role in improving the performance of silicon solar cells by reducing recombination losses. This study explores the use of sub-stoichiometric molybdenum oxide (MoOx) as a hole-selective contact material deposited via thermal evaporation. X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS) analysis reveal diverse Mo–O bonding configurations and a low work function of ∼5.02 eV for the MoOx film. The passivation properties of a cell-like structure with local MoOx contact are found to be comparable to those of a structure with a full front passivation layer, as evidenced by an implied open-circuit voltage (iVoc) of 703.2 mV. However, the conversion efficiency of the solar cell with MoOx contact is limited to 16.5 %, with reduced external quantum efficiency (EQE) at UV and visible wavelengths. The study proposes that optimizing the MoOx front contact's work function and passivation characteristics could improve the solar cell's efficiency to 21.8 %. This research demonstrates the potential of sub-stoichiometric MoOx as a promising hole-selective contact for silicon solar cells, highlighting the factors influencing its performance
    corecore