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Abstract: We have developed a low-cost, near-infrared (NIR) reflectance confocal 
microscope (RCM) to overcome challenges in the imaging depth and speed found in our 
previously-reported smartphone confocal microscope. In the new NIR RCM device, we have 
used 840 nm superluminescent LED (sLED) to increase the tissue imaging depth and speed. 
A new confocal detection optics has been developed to maintain high lateral resolution even 
when a relatively large slit width was used. The material cost of the NIR RCM device was 
still low, ~$5,200. The lateral resolution was 1.1 µm and 1.3 µm along the vertical and 
horizontal directions, respectively. Axial resolution was measured as 11.2 µm. In vivo 
confocal images of human forearm skin obtained at the imaging speed of 203 frames/sec 
clearly visualized characteristic epidermal and dermal cellular features of the human skin. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction

Skin biopsy histopathologic evaluation is the standard method for making a diagnostic 
assessment of most dermatological conditions. However, diagnosis often relies on clinical 
examination alone in remote and/or resource-scarce sites, which can lead to incorrect or 
delayed diagnosis [1,2] and inadequate treatment. Recently, smartphone-based microscopy 
devices have been developed with a goal of providing microscopy images at the point of care 
and subsequently improving the disease diagnosis in low-resource or distant settings. 
However, most of the smartphone-based microscopy devices are tailored for imaging excised 
and thinly-sectioned samples [3–7]. The sample acquisition and slide preparation remains 
challenging in these settings due to the lack of required equipment and trained personnel. 

Reflectance confocal microscopy (RCM) is an in vivo microscopy technology that can 
examine cellular features of the skin without having to invasively sample the suspicious 
lesions [8]. RCM has been evaluated for the diagnosis of various skin diseases and shown to 
provide high diagnostic accuracy for major skin cancers in developed countries [9,10]. 
Recently, RCM has been also tested for imaging skin diseases prevalent in low-resource 
settings such as Kaposi’s Sarcoma and Xeroderma Pigmentosum [11,12]. Clinical adaptation 
of RCM in low-resource or remote settings, however, has not been realized yet due mainly to 
the relatively high cost associated with the device. 

We had previously developed a low-cost, smartphone-based confocal microscope and 
demonstrated human skin imaging in vivo [13]. The smartphone confocal microscope utilized 
slit confocal apertures, a broadband LED, and diffraction gratings to image multiple lines of 
the tissue simultaneously with each line associated with a distinctive wavelength [14]. As a 
result, two-dimensional confocal images were obtained without using any beam scanning 
devices and the confocal microscope was built at low cost (material cost = $4,200). While the 
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2.4 Imaging performance test 

Lateral resolution of the low-cost NIR confocal microscope was measured by imaging a 
USAF resolution target. FWHM of the line spread function (LSF) was calculated along the 
spectrally-encoded and slit-length directions. Axial resolution was measured by translating a 
mirror along the objective lens optical axis with a motorized stage and calculating the FWHM 
of the axial response curve. The source power was attenuated during the resolution 
measurement to ensure that the pixel values were not saturated. 

Tissue imaging performance was evaluated by imaging human forearm in vivo at different 
imaging depth levels. The forearm skin surface was placed parallel to the focal plane of the 
objective lens. Ultrasound gel with a similar refractive index to that of water was applied 
between the forearm and objective lens. The exposure time was set at 4.8 msec and the 
resulting frame rate was 203 fps. The microscope was translated relative to the forearm using 
a motorized stage. The motor speed was set to 1 mm/sec and the scan range 500 µm. The 
maximum acceleration of the motor was 4 mm/sec2, which produced the acceleration time of 
0.25 sec and deceleration time 0.25 sec. At the center of the axial scanning, the uniform speed 
of 1 mm/sec was maintained over 250 µm range. Within the uniform speed region, the axial 
step size between frames was 5 µm. The skin surface was located at the beginning of the 
uniform velocity region. A bi-directional axial scan was conducted. The resulting 3D volume 
acquisition rate was 1.33 volumes/sec. 

Images were saved as an AVI file using a custom LabVIEW code (National Instruments, 
Austin, TX). At the end of each axial scanning, the confocal FOV was manually moved to a 
new imaging location and the axial scanning was conducted at the new imaging location. 
After image acquisition, the AVI file was segmented into multiple image stacks with each 
stack representing one axial scan. The image stacks were analyzed in ImageJ [18]. The 
background intensity level was measured and subtracted. 3D rending of the image stacks was 
conducted using 3D Slicer [19]. The speckle noise contrast was calculated by analyzing 
dermis images and dividing the standard deviation of the intensity values by the mean value 
at four 100 × 100-pixel regions that exhibited grossly uniform reflectivity without observable 
cellular features. The speckle noise contrast was measured at three different imaging depth 
levels. 

3. Results

A photograph of the low-cost confocal microscope is shown in Fig. 4. The confocal 
microscope had a dimension of 15 cm (W) × 16 cm (H) × 4.5 cm (D), and the weight was 
0.57 kg. The material cost for the confocal microscope was $5,188. The optical power on the 
specimen was 2.2 mW. 
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large-area imaging of the entire skin lesion within a short procedural time. We also expect 
that the low cost of the device will facilitate a wide adaption of the device in various clinical 
settings. 

There were several remaining technological challenges found during the preliminary 
testing. Even though a relatively wide slit was used, the speckle noise was still prominent in 
confocal images, which hindered the image interpretation. Use of the wide slit degraded the 
axial resolution. In the future development, we will address these two issues by using a high-
power LED, which has a significantly reduced spatial coherence and therefore allows for use 
of a narrow slit width. The volumetric imaging rate was limited to 1.33 volumes/sec mainly 
due to the acceleration and deceleration of the axial scanning stage. A piezoelectric transducer 
(PZT)-based scanner can be used to achieve higher volumetric imaging rate. In the new 
confocal detection optics, the CMOS sensor is located on the same side as the tissue, which 
will make it challenging to image certain anatomical locations such as back or face. A fold 
mirror can be used between the grating and camera lens to move the CMOS sensor away from 
the tissue and allow for imaging of a wider range of skin locations. In the future study of 
imaging suspicious skin lesions, we will evaluate the image quality of our microscope in 
comparison with the commercial confocal microscope and evaluate feasibilities of large-area 
scanning and real-time 3D imaging. 
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