1,847 research outputs found

    Investigation of thermal resistance and power consumption in Ga-doped indium oxide (In2O3) nanowire phase change random access memory

    Get PDF
    The resistance stability and thermal resistance of phase change memory devices using similar to 40 nm diameter Ga-doped In2O3 nanowires (Ga:In2O3 NW) with different Ga-doping concentrations have been investigated. The estimated resistance stability (R(t)/R-0 ratio) improves with higher Ga concentration and is dependent on annealing temperature. The extracted thermal resistance (R-th) increases with higher Ga-concentration and thus the power consumption can be reduced by similar to 90% for the 11.5% Ga: In2O3 NW, compared to the 2.1% Ga: In2O3 NW. The excellent characteristics of Ga-doped In2O3 nanowire devices offer an avenue to develop low power and reliable phase change random access memory applications. (C) 2014 AIP Publishing LLC.X113sciescopu

    Exposure to sound vibrations lead to transcriptomic, proteomic and hormonal changes in Arabidopsis

    Get PDF
    Sound vibration (SV) is considered as an external mechanical force that modulates plant growth and development like other mechanical stimuli (e.g., wind, rain, touch and vibration). A number of previous and recent studies reported developmental responses in plants tailored against SV of varied frequencies. This strongly suggests the existence of sophisticated molecular mechanisms for SV perception and signal transduction. Despite this there exists a huge gap in our understanding regarding the SV-mediated molecular alterations, which is a prerequisite to gain insight into SV-mediated plant development. Herein, we investigated the global gene expression changes in Arabidopsis thaliana upon treatment with five different single frequencies of SV at constant amplitude for 1 h. As a next step, we also studied the SV-mediated proteomic changes in Arabidopsis. Data suggested that like other stimuli, SV also activated signature cellular events, for example, scavenging of reactive oxygen species (ROS), alteration of primary metabolism, and hormonal signaling. Phytohormonal analysis indicated that SV-mediated responses were, in part, modulated by specific alterations in phytohormone levels; especially salicylic acid (SA). Notably, several touch regulated genes were also up-regulated by SV treatment suggesting a possible molecular crosstalk among the two mechanical stimuli, sound and touch. Overall, these results provide a molecular basis to SV triggered global transcriptomic, proteomic and hormonal changes in plant

    Recombinant mussel proximal thread matrix protein promotes osteoblast cell adhesion and proliferation

    Get PDF
    BACKGROUND: von Willebrand factor (VWF) is a key load bearing domain for mamalian cell adhesion by binding various macromolecular ligands in extracellular matrix such as, collagens, elastin, and glycosaminoglycans. Interestingly, vWF like domains are also commonly found in load bearing systems of marine organisms such as in underwater adhesive of mussel and sea star, and nacre of marine abalone, and play a critical load bearing function. Recently, Proximal Thread Matrix Protein1 (PTMP1) in mussel composed of two vWF type A like domains has characterized and it is known to bind both mussel collagens and mammalian collagens. RESULTS: Here, we cloned and mass produced a recombinant PTMP1 from E. coli system after switching all the minor codons to the major codons of E. coli. Recombinant PTMP1 has an ability to enhance mouse osteoblast cell adhesion, spreading, and cell proliferation. In addition, PTMP1 showed vWF-like properties as promoting collagen expression as well as binding to collagen type I, subsequently enhanced cell viability. Consequently, we found that recombinant PTMP1 acts as a vWF domain by mediating cell adhesion, spreading, proliferation, and formation of actin cytoskeleton. CONCLUSIONS: This study suggests that both mammalian cell adhesion and marine underwater adhesion exploits a strong vWF-collagen interaction for successful wet adhesion. In addition, vWF like domains containing proteins including PTMP1 have a great potential for tissue engineering and the development of biomedical adhesives as a component for extra-cellular matrix

    Stretching of porous poly (l-lactide-co-ε-caprolactone) membranes regulates the differentiation of mesenchymal stem cells

    Get PDF
    Background: Among a variety of biomaterials supporting cell growth for therapeutic applications, poly (l-lactide-co-ε-caprolactone) (PLCL) has been considered as one of the most attractive scaffolds for tissue engineering owing to its superior mechanical strength, biocompatibility, and processibility. Although extensive studies have been conducted on the relationship between the microstructure of polymeric materials and their mechanical properties, the use of the fine-tuned morphology and mechanical strength of PLCL membranes in stem cell differentiation has not yet been studied.Methods: PLCL membranes were crystallized in a combination of diverse solvent–nonsolvent mixtures, including methanol (MeOH), isopropanol (IPA), chloroform (CF), and distilled water (DW), with different solvent polarities. A PLCL membrane with high mechanical strength induced by limited pore formation was placed in a custom bioreactor mimicking the reproducible physiological microenvironment of the vascular system to promote the differentiation of mesenchymal stem cells (MSCs) into smooth muscle cells (SMCs).Results: We developed a simple, cost-effective method for fabricating porosity-controlled PLCL membranes based on the crystallization of copolymer chains in a combination of solvents and non-solvents. We confirmed that an increase in the ratio of the non-solvent increased the chain aggregation of PLCL by slow evaporation, leading to improved mechanical properties of the PLCL membrane. Furthermore, we demonstrated that the cyclic stretching of PLCL membranes induced MSC differentiation into SMCs within 10 days of culture.Conclusion: The combination of solvent and non-solvent casting for PLCL solidification can be used to fabricate mechanically durable polymer membranes for use as mechanosensitive scaffolds for stem cell differentiation

    A Novel Pinkish-White Flower Color Variant Is Caused by a New Allele of Flower Color Gene W1 in Wild Soybean (Glycine soja)

    Get PDF
    The enzyme flavonoid 3',5'-hydroxylase (F3'5'H) plays an important role in producing anthocyanin pigments in soybean. Loss of function of the W1 locus encoding F3'5'H always produces white flowers. However, few color variations have been reported in wild soybean. In the present study, we isolated a new color variant of wild soybean accession (IT261811) with pinkish-white flowers. We found that the flower's pinkish-white color is caused by w1-s3, a single recessive allele of W1. The SNP detected in the mutant caused amino acid substitution (A(304)S) in a highly conserved SRS4 domain of F3'5'H proteins. On the basis of the results of the protein variation effect analyzer (PROVEAN) tool, we suggest that this mutation may lead to hypofunctional F3'5'H activity rather than non-functional activity, which thereby results in its pinkish-white color
    corecore