1,287 research outputs found

    New decoding scheme for LDPC codes based on simple product code structure

    Full text link
    In this paper, a new decoding scheme for low-density parity-check (LDPC) codes using the concept of simple product code structure is proposed based on combining two independently received soft-decision data for the same codeword. LDPC codes act as horizontal codes of the product codes and simple algebraic codes are used as vertical codes to help decoding of the LDPC codes. The decoding capability of the proposed decoding scheme is defined and analyzed using the paritycheck matrices of vertical codes and especially the combined-decodability is derived for the case of single parity-check (SPC) and Hamming codes being used as vertical codes. It is also shown that the proposed decoding scheme achieves much better error-correcting capability in high signal to noise ratio (SNR) region with low additional decoding complexity, compared with a conventional decoding scheme.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Assessment of satellite rainfall nowcasting based on extrapolation technique

    Get PDF
    Póster presentado en: 3rd European Nowcasting Conference, celebrada en la sede central de AEMET en Madrid del 24 al 26 de abril de 2019

    Decreased Peripheral and Central Responses to Acupuncture Stimulation following Modification of Body Ownership

    Get PDF
    Acupuncture stimulation increases local blood flow around the site of stimulation and induces signal changes in brain regions related to the body matrix. The rubber hand illusion (RHI) is an experimental paradigm that manipulates important aspects of bodily self-awareness. The present study aimed to investigate how modifications of body ownership using the RHI affect local blood flow and cerebral responses during acupuncture needle stimulation. During the RHI, acupuncture needle stimulation was applied to the real left hand while measuring blood microcirculation with a LASER Doppler imager (Experiment 1, N = 28) and concurrent brain signal changes using functional magnetic resonance imaging (fMRI; Experiment 2, N = 17). When the body ownership of participants was altered by the RHI, acupuncture stimulation resulted in a significantly lower increase in local blood flow (Experiment 1), and significantly less brain activation was detected in the right insula (Experiment 2). This study found changes in both local blood flow and brain responses during acupuncture needle stimulation following modification of body ownership. These findings suggest that physiological responses during acupuncture stimulation can be influenced by the modification of body ownership

    Performance-Based Multiobjective Optimal Seismic Retrofit Method for a Steel Moment-Resisting Frame Considering the Life-Cycle Cost

    Get PDF
    This study proposes a performance-based multiobjective optimization seismic retrofit method for steel moment-resisting frames. The brittle joints of pre-Northridge steel moment-resisting frames are retrofitted to achieve ductility; the method involves determining the position and number of connections to be retrofitted. The optimal solution is determined by applying the nondominated sorting genetic algorithm-II (NSGA-II), which acts as a multiobjective seismic retrofit optimization technique. As objective functions, the initial cost for the connection retrofit and lifetime seismic damage cost were selected, and a seismic performance level below the 5% interstory drift ratio was employed as a constraint condition. The proposed method was applied to the SAC benchmark three- and nine-story buildings, and several Pareto solutions were obtained. The optimized retrofit solutions indicated that the lifetime seismic damage cost decreased as the initial retrofit cost increased. Although every Pareto solution existed within a seismic performance boundary set by a constraint function, the seismic performance tended to increase with the initial retrofit cost. Analysis and economic assessment of the relations among the initial retrofit cost, lifetime seismic damage cost, total cost, and seismic performance of the derived Pareto solution allow building owners to make seismic retrofit decisions more rationally

    Orthogonal Stability of an Additive-quartic Functional Equation in Non-Archimedean Spaces

    Get PDF
    Using fixed point method, we prove the Hyers-Ulam stability of the orthogonally additive-quartic functional equation f(2x+y)+ f(2x-y)=4 f(x+y)+ 4 f(x-y) + 10 f(x) + 14f(-x) - 3 f(y)-3f(-y) for all x,yx, y with xperpyxperp y, in non-Archimedean Banach spaces. Here perpperp is the orthogonality in the sense of Rätz

    Observation of the Far-ultraviolet Continuum Background with SPEAR/FIMS

    Full text link
    We present the general properties of the far-ultraviolet (FUV; 1370-1720A) continuum background over most of the sky, obtained with the Spectroscopy of Plasma Evolution from Astrophysical Radiation instrument (SPEAR, also known as FIMS), flown aboard the STSAT-1 satellite mission. We find that the diffuse FUV continuum intensity is well correlated with N_{HI}, 100 μ\mum, and H-alpha intensities but anti-correlated with soft X-ray. The correlation of the diffuse background with the direct stellar flux is weaker than the correlation with other parameters. The continuum spectra are relatively flat. However, a weak softening of the FUV spectra toward some sight lines, mostly at high Galactic latitudes, is found not only in direct-stellar but also in diffuse background spectra. The diffuse background is relatively softer that the direct stellar spectrum. We also find that the diffuse FUV background averaged over the sky has about the same level as the direct-stellar radiation field in the statistical sense and a bit softer spectrum compared to direct stellar radiation. A map of the ratio of 1400-1510A to 1560-1660A shows that the sky is divided into roughly two parts. However, this map shows a lot of patchy structures on small scales. The spatial variation of the hardness ratio seems to be largely determined by the longitudinal distribution of spectral types of stars in the Galactic plane. A correlation of the hardness ratio with the FUV intensity at high intensities is found but an anti-correlation at low intensities. We also find evidence that the FUV intensity distribution is log-normal in nature.Comment: 39 pages, 26 figures, accepted for publication in ApJ

    Enhanced heat transfer is dependent on thickness of graphene films: the heat dissipation during boiling

    Get PDF
    Boiling heat transfer (BHT) is a particularly efficient heat transport method because of the latent heat associated with the process. However, the efficiency of BHT decreases significantly with increasing wall temperature when the critical heat flux (CHF) is reached. Graphene has received much recent research attention for applications in thermal engineering due to its large thermal conductivity. In this study, graphene films of various thicknesses were deposited on a heated surface, and enhancements of BHT and CHF were investigated via pool-boiling experiments. In contrast to the well-known surface effects, including improved wettability and liquid spreading due to micron-and nanometer-scale structures, nanometer-scale folded edges of graphene films provided a clue of BHT improvement and only the thermal conductivity of the graphene layer could explain the dependence of the CHF on the thickness. The large thermal conductivity of the graphene films inhibited the formation of hot spots, thereby increasing the CHF. Finally, the provided empirical model could be suitable for prediction of CHF.open111522Nsciescopu
    corecore