36,983 research outputs found

    Suppression of Non-photonic Electrons from Enhancement of Charm Baryons in Heavy Ion Collisions

    Full text link
    At intermediate transverse momentum (2 < p_T < 6 GeV/c), baryon production in Au+Au collisions is enhanced compared to p+p collisions. Since charm baryon decays produce electrons less frequently than charm meson decays, the non-photonic electron spectrum is sensitive to the Lambda_c/D ratio. In this report we study the dependence of the non-photonic electron spectrum on the baryon-to-meson ratio for charm hadrons. As an example, we take the Lambda_c/D ratio to have the same form as the Lambda/K^0_S ratio. In this case, even if the total charm quark yield in Au+Au collisions scales with the number of binary nucleon-nucleon collisions (N_bin), the electron spectrum at 2 < p_T < 5 GeV/c is suppressed relative to N_bin scaled p+p collisions by as much as 20%.Comment: Added STAR data to figure 1 and made slight text modifications (fixed figure replacement

    Effect of flow forecasting quality on benefits of reservoir operation - a case study for the Geheyan reservoir (China)

    Get PDF
    This paper presents a methodology to determine the effect of flow forecasting quality on the benefits of reservoir operation. The benefits are calculated in terms of the electricity generated, and the quality of the flow forecasting is defined in terms of lead time and accuracy of the forecasts. In order to determine such an effect, an optimization model for reservoir operation was developed which consists of two sub-models: a long-term (monthly) and a short-term (daily) optimization sub-model. A methodology was developed to couple these two sub-models, so that both short-term benefits (time span in the order of the flow forecasting lead time) and long-term benefits (one year) were considered and balanced. Both sub-models use Discretized Dynamic Programming (DDP) as their optimization algorithms. The Geheyan reservoir on the Qingjiang River in China was taken as case study. Observed (from the 1997 hydrological year) and forecasted flow series were used to calculate the benefits. Forecasted flow series were created by adding noises to the observed series. Different magnitudes of noise reflected different levels of forecasting accuracies. The results reveal, first of all, a threshold lead time of 33 days, beyond which further extension of the forecasting lead time will not lead to a significant increase in benefits. Secondly, for lead times shorter than 33 days, a longer lead time will generally lead to a higher benefit. Thirdly, a perfect inflow forecasting with a lead time of 4 days will realize 87% of the theoretical maximum electricity generated in one year. Fourthly, for a certain lead time, more accurate forecasting leads to higher benefits. For inflow forecasting with a fixed lead time of 4 days and different forecasting accuracies, the benefits can increase by 5 to 9% compared to the actual operation results. It is concluded that the definition of the appropriate lead time will depend mainly on the physical conditions of the basin and on the characteristics of the reservoir. The derived threshold lead time (33 days) gives a theoretical upper limit for the extension of forecasting lead time. Criteria for the appropriate forecasting accuracy for a specific feasible lead-time should be defined from the benefit-accuracy relationship, starting from setting a preferred benefit level, in terms of percentage of the theoretical maximum. Inflow forecasting with a higher accuracy does not always increase the benefits, because these also depend on the operation strategies of the reservoir.\u

    Phase equilibrium in two orbital model under magnetic field

    Full text link
    The phase equilibrium in manganites under magnetic field is studied using a two orbital model, based on the equivalent chemical potential principle for the competitive phases. We focus on the magnetic field induced melting process of CE phase in half-doped manganites. It is predicted that the homogenous CE phase begins to decompose into coexisting ferromagnetic phase and CE phase once the magnetic field exceeds the threshold field. In a more quantitative way, the volume fractions of the two competitive phases in the phase separation regime are evaluated.Comment: 4 pages, 4 figure

    Computer simulation of the mathematical modeling involved in constitutive equation development: Via symbolic computations

    Get PDF
    Development of new material models for describing the high temperature constitutive behavior of real materials represents an important area of research in engineering disciplines. Derivation of mathematical expressions (constitutive equations) which describe this high temperature material behavior can be quite time consuming, involved and error prone; thus intelligent application of symbolic systems to facilitate this tedious process can be of significant benefit. A computerized procedure (SDICE) capable of efficiently deriving potential based constitutive models, in analytical form is presented. This package, running under MACSYMA, has the following features: partial differentiation, tensor computations, automatic grouping and labeling of common factors, expression substitution and simplification, back substitution of invariant and tensorial relations and a relational data base. Also limited aspects of invariant theory were incorporated into SDICE due to the utilization of potentials as a starting point and the desire for these potentials to be frame invariant (objective). Finally not only calculation of flow and/or evolutionary laws were accomplished but also the determination of history independent nonphysical coefficients in terms of physically measurable parameters, e.g., Young's modulus, was achieved. The uniqueness of SDICE resides in its ability to manipulate expressions in a general yet predefined order and simplify expressions so as to limit expression growth. Results are displayed when applicable utilizing index notation

    Tunable near- to mid-infrared pump terahertz probe spectroscopy in reflection geometry

    Full text link
    Strong-field mid-infrared pump--terahertz (THz) probe spectroscopy has been proven as a powerful tool for light control of different orders in strongly correlated materials. We report the construction of an ultrafast broadband infrared pump--THz probe system in reflection geometry. A two-output optical parametric amplifier is used for generating mid-infrared pulses with GaSe as the nonlinear crystal. The setup is capable of pumping bulk materials at wavelengths ranging from 1.2 μ\mum to 15 μ\mum and beyond, and detecting the subtle, transient photoinduced changes in the reflected electric field of the THz probe at different temperatures. As a demonstration, we present 15 μ\mum pump--THz probe measurements of a bulk EuSbTe3_{3} single crystal. A 0.5%0.5\% transient change in the reflected THz electric field can be clearly resolved. The widely tuned pumping energy could be used in mode-selective excitation experiments and applied to many strongly correlated electron systems.Comment: 4 pages, 4 figure
    corecore