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SUMMARY

Development of new material models for describing the "high temperature"
constitutive behavior of real materlals represents an Important area of
research in engineering disciplines. Derivation of mathematical expressions
(constitutive equations) which describe thls high temperature material behavior
can be quite time consuming, invo]ved and error prone; thus intelligent appll-
cation of symbolic systems to facilitate this tedious process can be of slgnif-
leant benefit. Here a computerized procedure (SDICE) capable of efficiently
deriving potential based constitutive models, In analytical form Is presented.
This package, running under MACSYMA, has the following features: partial dlf-
ferentlatlon, tensor computations, automatic grouping and labeling of common
factors, expression substitution and slmpllficatlon, back substltutlon of
invarlant and tensorlal relations and a relational data base. Also llmlted

aspects of invarlant theory have been incorporated into SDICE due to the utill-

zation of potentials as a starting point and the desire for these potentials to

be frame Invarlant (objectlve). Flnally not only calculatlon of flow and/or

evolutionary laws have been accomplished but also the determination of hlstory

independent nonphysical coefficlents in terms of physlcally measurable param-

eters, e.g., Young's modulus, has been achieved. The uniqueness of SDICE

resides In its ability to manipulate expresslons In a general yet predeflned

order and simplify expressions so as to limlt expresslon growth. Results are

displayed when applicable utillzlng index notation.

INTRODUCTION

Development of new materlal models for describing the constitutive behav-

for of real materlals represents an important area of research in engineering

disciplines. This is evidenced by research activltles, In areas associated,

for example, with high temperature composite, reinforced concrete and geotechnl-
cal materlals (ref. 3). Efforts in constitutive research involve the develop-

ment of mathematlcal relatlonshlps for predicting nonlinear material response,

derivatlon of material stlffness matrix approprlate for finite element calcula-
tlons (ref. 2), and fina]ly computer implementation. The entire process re-
quires slgnlflcant manual algebraic manipulations and computer programming.
Hence, the resQonse time for the related efforts is quite long. As a resu]t,
it is rather dlfflcult to Introduce slgniflcant changes or modiflcatlons Into
a constitutive theory. Moreover, the outcome of the research effort may be



affected by humanerrors whlch are often difficult to detect. In this regard,
symbolic computation can play a major role. Immediate benefits that can be
realized are: (I) reduced manual tedium, (2) Increased reliability of the de-
rived equations, hence the final analysis results, (3) shortened model develop-
ment time, and (4) Investigation of alternative functional forms. Furthermore,
application of symbolic manipulation can provide a significant incentive to the
developmentof new constitutive theories and their finite element applications.
However, two major obstacles arise whensymbolic manipulation methods are
applied for engineering applications: these are the numberof steps in the der-
Ivatlon process and the problem of expression growth (refs. 1 and 4 to 7).

Presented here is a problem oriented software package called SDICE (Sym-

bollc Derivation of Constitutive Equations) which is intended to assist in the

derlvatlon of potential based constitutive equatlons (refs. 14 and 18). The

major features of SDICE are the automatlon of the equation derivation steps and

its ability to simplify the results so as to alleviate the expression growth

problem.

SYSTEM SPECIFICATIONS OF SDICE

In deriving the materla] COF_St|tutlve equations and matrices, six types of

mathematical manipulations are required, i.e.,

(I) Partial dlfferentlation

(2) Tensor computations
(3) Factorlzatlons of common terms

(4) Expression slmplificatlon
(5) Back-substitutlon of invarlant and tensorial relatlons

Also, limited aspects of invarlant theory (ref. 13) has been incorporated
into SDICE due to the utilization of potentials as a starting point and the

desire for these potentials to be frame Invarlant (objective).

It has been shown that In most cases, the results obtained from direct

applIcatlon of a general purpose symbollc system, such as MACSYMA (ref. 20) are

not useful due to the number of steps involved In the derivation process and

the problems associated with expresslon growth. For this reason, resourceful

derivation procedures must be developed so that optimal results can be obtained

(refs. 14 to 16). The essential features of the approach taken to address the

above problems consists of:

(I) A structured derivation procedure to avoid redundant steps and to min-

Imize expression growth,

(2) Implementation of special procedures (e.g., procedures for simplifica-
tion and pattern recognition) to facilitate the derivation process,

(3) Expression substitution and simpliflcatlon during the entire deriva-

tion process by incorporating several levels of processing,

(4) Automatic grouping and labellng of common factors,

(5) Taking advantage of permutatlon and symmetry relationships of the

terms Involved in each derlvation step, and

(6) As a rule-based system, intended for constitutive equation research,
SDICE will record user defined rules and store them in a relational

data base, whereby the Information may be retrieved, redefined and

restored as required.
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Some of the above procedures and technlques will be discussed, through
application examples, in the next section.

APPLICATION TO CONSTITUTIVE EQUATIONS FOR VISCOPLASTIC MATERIAL MODELS

Constitutive laws provide the llnk between stress components Oil and

strain components clj at any point in a body. These laws may be simple or
extremely complex, depending upon the material of the body and the conditions

to which it has been subjected. Consider the well known case of a hyperelas-

tic material. Here, the stress and strain components are related through a

normality structure utilizing either a strain energy or complementary energy
function, i.e.,

(1)

or

(2)

For inelastic material behavior the Internal state variable potential
viewpoint is adopted, i.e.,

: _(olj,:B,T) (3)

with the generallzed normality structure (refs. 8 to I0)

8Q

cij - aalj i,J . 1,2,3
(4)

and

EB -h(_ ) 8______
: y 8_B

= 1,2,. .,n (5)

Where _ is the complementary d_ssipation potentlal functlon, ci_ the Inelas-
tlc straln, and _B the internal state varlables. Equations (4)-and (5) are
known as the flow and evolutionary equatlons, respectively.

Frame Invarlance (objectivity) of the resulting constitutive relations is

insured by requiring the potential, _, to depend only on certain Invarlarts and

Invarlant products of its respectlve tensorial arguments, l.e., an Integrity
basis. Both isotroplc and transversely isotroplc material symmetries have been

considered. Transversely isotroplc material symmetry Is included In the poten-

tials of equatlons (1) to (3) by introducing a directlonal tensor didj, e.g.,

= Q(olj,:B,didj,T) or W = (eij,didj). The symmetrlc tensor didj Is
formed by a self product of the Onit 9ector dI denoting the local preferred
directlon.

Two viscoplastic theories have been proposed for Isotropic materlals

(refs. II and 12). In both theorles the exlstence of a dissipation potential
Is assumed, and the form is taken to be,
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(6)

where the dependenceof the applled stress and internal stress (cf eq. (3))
enters through the scalar functions F(Slj) and G(_ij), respectlvely.

For a material wlth transversely Isotroplc symmetry the dlsslpatlon poten-

tlal _s assumed to take the form of equation (6) where now the dependence of

the applied stress, internal stress, and preferred direction enters through

the scalar functions F(Eij,did j) and G(aij,did j) respectively. The stress
dependence Is now given by

F : [AJ2 + BJ5 + CJ_] - I

where

J2 : ½ ZijZlj

J4 = didjI:jl

J5 : didjZjkZkl

52 = I aijalj

34 : didjajl

75 : dldjajkaki

Zij : SIj - alj

I

sij : aij - ] _kkaij

I

aij = <_lj - 3 mkk61j

Upon applicatlon of equations (4) and (5) the resultlng flow and evolutionary
laws are"

f(F)

_ij = _ rij (7)

alj = h(G)&lj - Y(G)_Ij (8)



where

rij : A_ij + B[dkdiSjk + djdkEki - 2J4dld j] + _ CJ4(3didj - 61j)

_iJ = Aa|j + B[dkdiajk + djdkaki - 2_4did j] + 2 C_4(3did j _ 61j)

The computations required in the derivation of the above flow and evolu-
tionary equations are partial differentiation and tensorlal manipulation of
Invariant relations. Direct use of a symbolic system, as our tool, in the der-
ivation process is complicated. So, special purpose procedures have to be
designed and Implemented In order to simplify and expedite the derivation proc-
ess. Our work thus far has resulted in the development of several strategies,
namely:

(I) Store the invariant relatlons In a relational data base.

(2) Implement procedures to compute tensor expressions according to the
rules defined in tensor calculus.

(3) Map a tensor Into the domain of a scalar by utilizing a property list

to store the varlable and its subscript; thereby, a11owlng all differentiation

to be treated in the same way.

(4) Generate subscripts for intermediate tensor variables and store them

In the same property list in a predefined order.

(5) Differentiation results are represented by a search tree, starting
wlth the potential function as the root of the tree and its descendants with-

out dependent relations among themselves as leaves. A separate procedure
decides whether the function and its variables are tensorial or scalar.

(6) Finally, check the property llst and if the function Involves tensors,

subscrlpts are added back for the flnal result accordlng to the predetermined
order.

(7) Simplify the result by (a) checking the data base so as to replace any

known Invariant relation in the final expressions, (b) grouping common terms by

factorizatlon, and (c) identlfylng terms that can be written as a tensor.

For example, when processing the Invariant O2 In the transversely Iso-
troplc case, the definltlon is

l

a2 : _ sijzij

the procedure first generates

1
8J 2 8 _ a

1 ZijZij
- ZijZij + 2 aZkaZkl 8Zkl 1

following the chain-rule. Calling the procedure recurslvely, we have



l
a_

0
aEkl -

and

aEkl ZijZij = 8Ekl j + 8Ekl la

Then checking the data base for invariant relations and applying the tensor
routines, we obtain from above

2]:ij61k6jl

Thus by combining we have,

@J2
- Elj6ik6jl

8EIj

Finally, by calling the procedure identifying the rules of tensorlal cal-

culus and back-substltutlng, the result becomes Ek1.

All the requlred computatlonal rules for deriving the constitutlve equa-

tlon have been integrated into SDICE along with rules which define tensorial

calculus and invarlant relations. For example, In deriving the flow law for a

transversely Isotroplc model, we have

@Q 8____-(8F8J2 8F 8J5 8F 8J4]al]kl aSrs1
_lj- aolj + } aSrsa-_jj= aFLL_2 aEKI+_ aEKI aa4 aEKl

From equation (6) we know that

2
aft _ f(F>
@F - 2_

and by tensor calculus and indlcal notation we have

8}:kl 8Srs 1

8Srs 8°ij - 6kr61s(6ri6s_ - _ 6ij6rs)

( I )= 6ki61j - -_ 6ij6kl

By introducing constants A, B, and C into the assumed forms of F and G

as indicated earlier, requires that

8F
A

8j 2 -



BF
B

aj5 -

and differentiating Invariant relatlons through the procedures we have just
mentioned results In

aJ4

BEkl : dpdq&qk&pl = dkd I

and

aJ5

- dpdq(6qk61 + )a_kl r_rp Eqr_rk6pI

= dpdq(6qkZlp + _qk6pl )

= dpdkE1p + Sqkdldq

Next back substitution is activated,

8F BJ4

8J4 8Ekl = 2CJ4dkd I

and

BF @J5

8J-5 @_kl" = B(dpdkEIp + dldqEqk)

Finally, by checking the data base and substituting back all tensorlal as

well as Invarlant relations defined in the table _nto the orlglnal expression,
SDICE produced the followlng form for the flow law

gedlj " f(ff)gk2(bb(3ggtllj - 2gdijjj4) + cc(6did j - 2gd_j)jj4 + 3aa gssij)/6gm

where

ggtllj • dldilgssji I + gssiildild j

To obtain the associated evolutlonary law, equation (5) is applied, i.e.,
instruct SDICE to take the following action



resulting In

gadlj : hb gedlj - g(gg) gk2 hb rr (bb(3ggt2ij - 2gdljjja4)

where

ggt21j • dldllajl I + ailldild j

+ cc(6did j - 2gdij)Jja4 + 3a alj)/3hh

Thls agrees completely with equation (7) which was manually obtained. (We

have adopted the convention of using double lower case letters for capltal let-

ters, and variables starting with "g" mean Greek alphabet).

IMPLEMENTATION OF PROBLEM-ORIENTED COMPUTATION PROCEDURE

Application of symbolic systems for material model development involves
the symbollc solutions of systems of simultaneous equations. There are proce-
dures under MACSYMA to solve systems of equations of different type. However,
these general-purpose procedures when applled to our applicatlon, cause expres-
slon growth to become uncontrollable and the results are often not useful.

Under MACSYMA, for example, there are procedures for solving systems of
equations, such as solve and llnsolve. For certain applications, by setting
the parameter backsubst equal to false, the results are simpler and the solu-
tion process faster because back substitution is prevented after the system of
equations have been triangularized. Thls may be necessary In very large prob-
lems where back substltutlon would cause the generation of extremely large
expressions (readers are referred to MACSYMA Manual for details).

The systems of equations we are dealing with are primarily sparse and the

coefficients of thelr variables are usually not numbers but polynomlals. The
appllcation of Gausslan ellmlnatlon which is used in linsolve produces results

that are usually lengthy and Inefficient.

A new derivation procedure is Implemented into SDICE to solve the problem

of expression growth and increase the computational efficiency. The underlying

concept behind this Improved procedure Is the identification of the smallest

full subsystem contained within the origlnal and then subsequent remalnlng sys-

tems. Gausslan elimlnatlon is employed to solve these subsystems independently

and sequentially Instead of the complete system.

To clarify this procedure, consider the following sparse system of
equatlons"

II
2(u2 - tu ÷ 3t2)x2 + 5(u + t)x] = (9)



(2t - 3u)xl - 2u2x2 7 V(u + t)
= 8

(I0)

3u3x3

(t - i)2 + u2x2 + xl =

I13
8(kt - u)

13
(ll)

71u3x3 3x2
7x5 - 4u4x4 +

(t + l) 3 + T + uxl : 9 (12)

-5uSx5 + 4u4x4 + 3u3x3 + 2u2x2 + (u + 2)xl

t2
- I0 (13)

The procedure first searches for the smallest full subsystem in the system and

In our case, chooses (9) and (lO). The subsystem is then solved by Gausslan

ellmlnatlon without generation of intermediate variables and we obtain"

xl : V(u + t)(7ku 2 - 7ktu + 21kt 2) + 44u 2

16ku 3 + 80ktu 2 _ 88kt2u + 48kt 3

(24u - 16t)xl + 7 V(u + t)x2 ,
16u 2

The symbols xl and x2 are then stored and treated as constants In the

remalnlng equatlons. With the remaining 3 x 3 system, the smallest subsystem
Is l x I. So, an Intermedlate variable zzl is generated to represent that

part of the equation containing the previously determined variables, that Is

zzl = 13u2x2 + 13xl

and x3 can now be solved for Immediately.

x3=
(t2 - 2t + l)zzl + (-8t2 + 16t - 8)(kt - u)I/3

39u 3

Followlng the same steps as before, the remalnlng system of unknowns Is a full

2 x 2 system, and two intermediate variables zz2 and zz3 are generated to

represent previously obtalned variables.

71u3x3 3x2
: + -_- + uxlzz2 t 3 + 3t 2 + 3t + I

and

zz3 : 3u3x3 + 2u2x2 +
(u + 2)xl

t2

Finally, by applying Gausslan ellmination, we have

9



x4=
7zz3 + u5(Szz2 - 45) - 70

20u 9 _ 28u 4

and

x5.
-zz2 + 4u4x4 + 9

By comparing with the result obtained from MACSYMA, the expression size

is smaller and the computation effort required is less, due to the generation
of intermediate variables and the partltlonlng of the system into smaller

subsystems.

CONCLUSION

We have dlscussed the use of a symbolic computation method to automati-

cally derive constitutive equations. The derivation steps and some of the com-

putational methods used for potentla] based constitutive model research have

been presented. It Is hoped that the approach discussed here may find app]Ica-
tlons in physics as well as other englneerlng dlscipllnes.
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