1,175 research outputs found

    Management of Extracranial Carotid Artery Aneurysms:17 Years» Experience

    Get PDF
    AbstractObjectives:a retrospective review of seventeen-year (1980–1996) experience of the management of extracranial carotid artery aneurysms.Patients and methods:sixty-six aneurysms of extracranial carotid artery were seen in 63 patients. The diagnosis was confirmed by angiography in 51 patients and duplex ultrasonography in twelve. Twenty-eight (42%) patients had an atherosclerotic aneurysm, twenty-two (33%) had false aneurysms secondary to trauma, nine were congenital and seven were mycotic. All underwent aneurysm resection with saphenous-vein-graft interposition as the most common means of reconstruction.Results:one death occurred due to septicaemia in a diabetic patient with a mycotic aneurysm, giving an operative mortality of 1.5%. One patient had an immediate hemiparesis after carotid artery ligation, and three had a hemiparesis within 48 hours of operation (6.1%). After a change in technique to avoid a residual carotid stump, no further neurological problems were encountered in the following 28 patients.Conclusion:extracranial carotid aneurysms may be successfully managed with resection and reconstruction with autogenous saphenous vein. End-to-side anastomosis avoids a blind-ending stump which may be the source of emboli

    UBR2 of the N-End Rule Pathway Is Required for Chromosome Stability via Histone Ubiquitylation in Spermatocytes and Somatic Cells

    Get PDF
    The N-end rule pathway is a proteolytic system in which its recognition components (N-recognins) recognize destabilizing N-terminal residues of short-lived proteins as an essential element of specific degrons, called N-degrons. The RING E3 ligases UBR2 and UBR1 are major N-recognins that share size (200 kDa), conserved domains and substrate specificities to N-degrons. Despite the known function of the N-end rule pathway in degradation of cytosolic proteins, the major phenotype of UBR2-deficient male mice is infertility caused by arrest of spermatocytes at meiotic prophase I. UBR2-deficient spermatocytes are impaired in transcriptional silencing of sex chromosome-linked genes and ubiquitylation of histone H2A. In this study we show that the recruitment of UBR2 to meiotic chromosomes spatiotemporally correlates to the induction of chromatin-associated ubiquitylation, which is significantly impaired in UBR2-deficient spermatocytes. UBR2 functions as a scaffold E3 that promotes HR6B/UbcH2-dependent ubiquitylation of H2A and H2B but not H3 and H4, through a mechanism distinct from typical polyubiquitylation. The E3 activity of UBR2 in histone ubiquitylation is allosterically activated by dipeptides bearing destabilizing N-terminal residues. Insufficient monoubiquitylation and polyubiquitylation on UBR2-deficient meiotic chromosomes correlate to defects in double strand break (DSB) repair and other meiotic processes, resulting in pachytene arrest at stage IV and apoptosis. Some of these functions of UBR2 are observed in somatic cells, in which UBR2 is a chromatin-binding protein involved in chromatin-associated ubiquitylation upon DNA damage. UBR2-deficient somatic cells show an array of chromosomal abnormalities, including hyperproliferation, chromosome instability, and hypersensitivity to DNA damage-inducing reagents. UBR2-deficient mice enriched in C57 background die upon birth with defects in lung expansion and neural development. Thus, UBR2, known as the recognition component of a major cellular proteolytic system, is associated with chromatin and controls chromatin dynamics and gene expression in both germ cells and somatic cells

    Parallel chemistry acceleration algorithm with ISAT table-size control in the application of gaseous detonation

    Get PDF
    In order to improve the computational efficiency of a parallel ISAT (in situ adaptive tabulation)-based chemistry acceleration algorithm in the computations of transient, chemically reacting flows, a control strategy is proposed to maintain the sizes of the data tables in the ISAT computations. The table-size control strategy is then combined with a parallel algorithm to simulate two-dimensional gaseous detonation wave propagation. In the computation of 2H2 + O2 detonation, two sets of tests are conducted to identify the size control strategy. In the first set, the maximum total table size (Mtot) summed over all sub-zones is fixed, while the maximum size of the table on each sub-zone (Msin) is varied. In the second set, a fixed Msin is used for all the tables on the sub-zones while Mtot is varied. A maximum speedup ratio of 4.29 is found in the former tests, while 5.52 is found in the latter. Two parameters, σf and p, are proposed to analyze the load balance and synchronization among table operations in the parallel ISAT computations in the above tests. It is found that both load balance and synchronization have clear influences on the speedup ratio. A parameter pM is defined, and a strategy to choose the optimal maximum table sizes (both Mtot and Msin) based on pM is proposed and is verified to be universal in the computations of both 2H2 + O2 detonation and C2H4 + 3O2 detonation. Finally, the parallel acceleration algorithm enhanced with table-size control is shown to be highly accurate for the detonations in both fuels

    Evidence for solar cycles in a late Holocene speleothem record from Dongge Cave, China

    Get PDF
    The association between solar activity and Asian monsoon (AM) remains unclear. Here we evaluate the possible connection between them based on a precisely-dated, high-resolution speleothem oxygen isotope record from Dongge Cave, southwest China during the past 4.2 thousand years (ka). Without being adjusted chronologically to the solar signal, our record shows a distinct peak-to-peak correlation with cosmogenic nuclide 14C, total solar irradiance (TSI) and sunspot number (SN) at multi-decadal to centennial timescales. Further cross-wavelet analyses between our calcite δ18O and atmospheric 14C show statistically strong coherence at three typical periodicities of ~80, 200 and 340 years, suggesting important roles of solar activities in modulating AM changes at those timescales. Our result has further indicated a better correlation between our calcite δ18O record and atmospheric 14C than between our record and TSI. This better correlation may imply that the Sun–monsoon connection is dominated most likely by cosmic rays and oceanic circulation (both associated to atmospheric 14C), instead of the direct solar heating (TSI)

    Identification of two novel CT antigens and their capacity to elicit antibody response in hepatocellular carcinoma patients

    Get PDF
    FATE and TPTE genes were originally reported to be specifically expressed in the adult testis. We searched for the databases of Unigene and serial analysis of gene expression ( SAGE) implying that these two gene transcripts might also be expressed in tumours. Herein, we demonstrated that FATE and TPTE mRNA transcripts were expressed in different histological types of tumours and normal testis. Both are cancer-testis (CT) antigens and renamed as FATE/BJ-HCC-2 and TPTE/BJ-HCC-5, respectively. Comparison at nucleotide sequence, the FATE/BJ-HCC-2 cDNA, was identical to that of FATE, whereas the TPTE/BJ-HCC-5 was found to have two isoforms in both cancers and testis: one was identical in cDNA sequence to TPTE, encoding a protein of 551 amino acids, and the other variant lacked an exon of 54 bp, encoding a protein of 533 amino acids. The mRNA expression was analysed by RT-PCR and real-time PCR. FATE/BJ-HCC-2 mRNA was detected in 66% ( 41 out of 62) in hepatocellular carcinoma (HCC) samples and 21% ( three out of 14) in colon cancer samples, whereas the TPTE/BJ-HCC-5 mRNA was detected in 39% ( 24 out of 62) and 36% ( five out of 14) in HCC and non-small lung cancer samples, respectively. The recombinant proteins were prepared and the reactivity of allogenic sera to these two antigens was screened. The frequency of antibody response against FATE/BJ-HCC-2 and TPTE/BJ-HCC-5 proteins was 7.3% ( three out of 41) and 25.0% ( six out of 24), respectively, in HCC patients bearing respective gene transcripts. Therefore, FATE/BJ-HCC-2 and TPTE/BJ-HCC-5 are the novel CT antigens capable of eliciting antibody response in cancer patients.OncologySCI(E)PubMed22ARTICLE2291-2978

    Genetic polymorphisms in the matrix metalloproteinase 12 gene (MMP12) and breast cancer risk and survival: the Shanghai Breast Cancer Study

    Get PDF
    INTRODUCTION: Matrix metalloproteinase 12 (MMP12) is a proteolytic enzyme responsible for cleavage of plasminogen to angiotensin, which has an angiostatic effect. Using data from a population-based case–control study conducted among Chinese women in Shanghai, we evaluated the association of breast cancer risk and survival with two common polymorphisms in the MMP12 gene: A-82G in the promoter region and A1082G in exon, resulting in an amino acid change of asparagine to serine. METHODS: Included in the study were 1,129 cases and 1,229 age-frequency-matched population controls. Breast cancer patients were followed up to determine the intervals of overall survival and disease-free survival. RESULTS: The frequencies of the G allele in the A-82G and A1082G polymorphism among controls were 0.029 and 0.107, respectively. There were no associations between MMP12 polymorphisms and breast cancer risk. Patients with the AG or GG genotype of the A1082G polymorphism showed poorer overall survival (though the difference was not statistically significant) than patients with the AA genotype (hazard ratio 1.36, 95% CI 0.92 to 2.00). CONCLUSION: This result suggests that MMP12 A1082G polymorphism may be related to prognosis in breast cancer patients. Additional studies with larger sample sizes are warranted

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψπ+πJ/ψ(J/ψγppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=186113+6(stat)26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    Synthesis of Aqueous CdTe/CdS/ZnS Core/shell/shell Quantum Dots by a Chemical Aerosol Flow Method

    Get PDF
    This work described a continuous method to synthesize CdTe/CdS/ZnS core/shell/shell quantum dots. In an integrated system by flawlessly combining the chemical aerosol flow system working at high temperature (200–300°C) to generate CdTe/CdS intermediate products and an additional heat-up setup at relatively low temperature to overcoat the ZnS shells, the CdTe/CdS/ZnS multishell structures were realized. The as-synthesized CdTe/CdS/ZnS core/shell/shell quantum dots are characterized by photoluminescence spectra, X-ray diffraction (XRD), energy-dispersive X-ray spectra (EDS), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). Fluorescence and XRD results confirm that the obtained quantum dots have a core/shell/shell structure. It shows the highest quantum yield above 45% when compared to the rhodamine 6G. The core/shell/shell QDs were more stable via the oxidation experiment by H2O2
    corecore