67 research outputs found

    PNC Enabled IIoT: A General Framework for Channel-Coded Asymmetric Physical-Layer Network Coding

    Full text link
    This paper investigates the application of physical-layer network coding (PNC) to Industrial Internet-of-Things (IIoT) where a controller and a robot are out of each other's transmission range, and they exchange messages with the assistance of a relay. We particularly focus on a scenario where the controller has more transmitted information, and the channel of the controller is stronger than that of the robot. To reduce the communication latency, we propose an asymmetric transmission scheme where the controller and robot transmit different amount of information in the uplink of PNC simultaneously. To achieve this, the controller chooses a higher order modulation. In addition, the both users apply channel codes to guarantee the reliability. A problem is a superimposed symbol at the relay contains different amount of source information from the two end users. It is thus hard for the relay to deduce meaningful network-coded messages by applying the current PNC decoding techniques which require the end users to transmit the same amount of information. To solve this problem, we propose a lattice-based scheme where the two users encode-and-modulate their information in lattices with different lattice construction levels. Our design is versatile on that the two end users can freely choose their modulation orders based on their channel power, and the design is applicable for arbitrary channel codes.Comment: Submitted to IEEE for possible publicatio

    Construction of a Medical Micro-Object Cascade Network for Automated Segmentation of Cerebral Microbleeds in Susceptibility Weighted Imaging

    Get PDF
    Aim: The detection and segmentation of cerebral microbleeds (CMBs) images are the focus of clinical diagnosis and treatment. However, segmentation is difficult in clinical practice, and missed diagnosis may occur. Few related studies on the automated segmentation of CMB images have been performed, and we provide the most effective CMB segmentation to date using an automated segmentation system.Materials and Methods: From a research perspective, we focused on the automated segmentation of CMB targets in susceptibility weighted imaging (SWI) for the first time and then constructed a deep learning network focused on the segmentation of micro-objects. We collected and marked clinical datasets and proposed a new medical micro-object cascade network (MMOC-Net). In the first stage, U-Net was utilized to select the region of interest (ROI). In the second stage, we utilized a full-resolution network (FRN) to complete fine segmentation. We also incorporated residual atrous spatial pyramid pooling (R-ASPP) and a new joint loss function.Results: The most suitable segmentation result was achieved with a ROI size of 32 × 32. To verify the validity of each part of the method, ablation studies were performed, which showed that the best segmentation results were obtained when FRN, R-ASPP and the combined loss function were used simultaneously. Under these conditions, the obtained Dice similarity coefficient (DSC) value was 87.93% and the F2-score (F2) value was 90.69%. We also innovatively developed a visual clinical diagnosis system that can provide effective support for clinical diagnosis and treatment decisions.Conclusions: We created the MMOC-Net method to perform the automated segmentation task of CMBs in an SWI and obtained better segmentation performance; hence, this pioneering method has research significance

    The development of an ingestible biosensor for the characterization of gut metabolites related to major depressive disorder: hypothesis and theory

    Get PDF
    The diagnostic process for psychiatric conditions is guided by the Diagnostic and Statistical Manual of Mental Disorders (DSM) in North America. Revisions of the DSM over the years have led to lowered diagnostic thresholds across the board, incurring increased rates of both misdiagnosis and over-diagnosis. Coupled with stigma, this ambiguity and lack of consistency exacerbates the challenges that clinicians and scientists face in the clinical assessment and research of mood disorders such as Major Depressive Disorder (MDD). While current efforts to characterize MDD have largely focused on qualitative approaches, the broad variations in physiological traits, such as those found in the gut, suggest the immense potential of using biomarkers to provide a quantitative and objective assessment. Here, we propose the development of a probiotic Escherichia coli (E. coli) multi-input ingestible biosensor for the characterization of key gut metabolites implicated in MDD. DNA writing with CRISPR based editors allows for the molecular recording of signals while riboflavin detection acts as a means to establish temporal and spatial specificity for the large intestine. We test the feasibility of this approach through kinetic modeling of the system which demonstrates targeted sensing and robust recording of metabolites within the large intestine in a time- and dose- dependent manner. Additionally, a post-hoc normalization model successfully controlled for confounding factors such as individual variation in riboflavin concentrations, producing a linear relationship between actual and predicted metabolite concentrations. We also highlight indole, butyrate, tetrahydrofolate, hydrogen peroxide, and tetrathionate as key gut metabolites that have the potential to direct our proposed biosensor specifically for MDD. Ultimately, our proposed biosensor has the potential to allow for a greater understanding of disease pathophysiology, assessment, and treatment response for many mood disorders

    Germline Predisposition and Copy Number Alteration in Pre-stage Lung Adenocarcinomas Presenting as Ground-Glass Nodules

    Get PDF
    Objective: Synchronous multiple ground-glass nodules (SM-GGNs) are a distinct entity of lung cancer which has been emerging increasingly in recent years in China. The oncogenesis molecular mechanisms of SM-GGNs remain elusive.Methods: We investigated single nucleotide variations (SNV), insertions and deletions (INDEL), somatic copy number variations (CNV), and germline mutations of 69 SM-GGN samples collected from 31 patients, using target sequencing (TRS) and whole exome sequencing (WES).Results: In the entire cohort, many known driver mutations were found, including EGFR (21.7%), BRAF (14.5%), and KRAS (6%). However, only one out of the 31 patients had the same somatic missense or truncated events within SM-GGNs, indicating the independent origins for almost all of these SM-GGNs. Many germline mutations with a low frequency in the Chinese population, and genes harboring both germline and somatic variations, were discovered in these pre-stage GGNs. These GGNs also bore large segments of copy number gains and/or losses. The CNV segment number tended to be positively correlated with the germline mutations (r = 0.57). The CNV sizes were correlated with the somatic mutations (r = 0.55). A moderate correlation (r = 0.54) was also shown between the somatic and germline mutations.Conclusion: Our data suggests that the precancerous unstable CNVs with potentially predisposing genetic backgrounds may foster the onset of driver mutations and the development of independent SM-GGNs during the local stimulation of mutagens

    The modifiable areal unit problem in traffic safety: Basic issue, potential solutions and future research

    No full text
    This study fully addressed the modifiable areal unit problem (MAUP) that was well-known in geography but generally ignored by safety analysis. The basic issue of MAUP was introduced firstly with a case study to explicitly demonstrate the existence of the problem in macro level crash modeling, and then four potential strategies, i.e., using disaggregate data as possible, capturing spatial non-stationarity, designing optimal zoning systems, conducting sensitivity analysis to report the scope and magnitude of MAUP, were proposed and illustrated in an integrated way, followed by the future research directions. Results revealed that more efforts are desired to calibrate the state-of-art modeling technique at various levels of aggregation based on spatial homogeneity in traffic safety, transport characteristics, and demographical factors. The awareness of this problem in traffic safety domain is expected to the delineation of basic spatial units (e.g. the traffic safety analysis zones), as well as to provide new insights into the nature of MAUP in statistics and geography

    Point Cloud Information Extraction for Streetlights with Vehicle-borne LiDAR

    No full text
    The acquisition of detailed information for the streetlights in a large scene remains a tough task since the streetlights are of great number and types. In this paper, a method is proposed to extract and classify the streetlights, with the aid of prior sample sets on the basis of skeleton-line-buffer discriminant algorithm. First, a model and a priori sample set for streetlights are established according to the expression characteristics of streetlights in vehicle-borne LiDAR point cloud. Secondly, with the theory and method of mathematical morphology, the rod-shaped objects are extracted in vehicle LiDAR point cloud scene, and the candidate streetlights are chosen under the constraint of streetlight model and semantic rules. Then, the candidate samples are selected from the sample sets according to the parameter information and the statistical information obtained from the selected streetlights. Finally, based on the matching algorithm of least squares theory, we select and match the priori samples of streetlights and the candidate streetlights. Based on the double buffer of streetlight skeleton information, we discriminate and analyze the candidate streetlights to achieve the extraction and identification of street lights. Finally, the priori samples of streetlights and the point cloud of the candidate streetlights are matched and screened with the matching algorithm of least square theory; and based on the double buffer of streetlight skeleton information, the candidate streetlights are discriminated and analyzed to achieve the extraction and identification of streetlights. Our experiment shows that the algorithm is efficient and robust for the extraction of detailed information of streetlights. For the streetlights with less occlusion and relatively complete data, the extraction accuracy is 0.952, and for those with serous occlusion, low point cloud density and poor data integrity, the extraction accuracy is 0.780. And the above results validate the robustness of the proposed algorithm for the extraction of intermediate streetlights from large scenes. The detailed information extracted by the algorithm can be used to serve the fine and dynamic management of streetlights in large scenes

    Preventive Control Policy Construction in Active Distribution Network of Cyber-Physical System with Reinforcement Learning

    No full text
    Once an active distribution network of a cyber-physical system is in alert state, it is vulnerable to cross-domain cascading failures. It is necessary to transit the state of an active distribution network of cyber-physical system from an alert state to a normal state using a preventive control policy against cross-domain cascading failures. In fact, it is difficult to construct and analyze a preventive control policy via theoretical analysis methods or physical experimental methods. The theoretical analysis methods may not be accurate due to approximated models, and the physical experimental methods are expensive and time consuming for building prototypes. This paper presents a preventive control policy construction method based on a deep deterministic policy gradient idea (shorted as PCMD) to generate and optimize a preventive control policy with Artificial Intelligence (AI) technologies. It adopts the reinforcement learning technique to make full use of the available historical data to overcome the problems of high cost and low accuracy. Firstly, a preventive control model is designed based on the finite automaton theory, which can guide the data collection and learning policy selection. The control model considers the voltage stability, frequency stability, current overload prevention, and the control cost reduction as a feedback variable, without the specific power flow equations and differential equations. Then, after enough training, a local optimal preventive control policy can be constructed under the comparability condition among a fitted action-value function and a fitted policy function. The constructed preventive control policy contains some control actions to achieve a low cost and in accord with the principle of shortening a cross-domain cascading failures propagation sequence as far as possible. The PCMD is more flexible and closer to reality than the theoretical analysis methods and has a lower cost than the physical experimental methods. To evaluate the performance of the proposed method, an experimental case study, China Electric Power Research-Cyber-Physical System (shorted as CEPR-CPS), which comes from China Electric Power Research Institute, is carried out. The result shows that the effectiveness of preventive control policy construction with the PCMD is better than most current methods, such as the multi-agent method in terms of reducing the number of failure nodes and avoiding the state space explosion
    corecore