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Aim: The detection and segmentation of cerebral microbleeds (CMBs) images are the
focus of clinical diagnosis and treatment. However, segmentation is difficult in clinical
practice, and missed diagnosis may occur. Few related studies on the automated
segmentation of CMB images have been performed, and we provide the most
effective CMB segmentation to date using an automated segmentation system.

Materials and Methods: From a research perspective, we focused on the automated
segmentation of CMB targets in susceptibility weighted imaging (SWI) for the first time and
then constructed a deep learning network focused on the segmentation of micro-objects.
We collected and marked clinical datasets and proposed a new medical micro-object
cascade network (MMOC-Net). In the first stage, U-Net was utilized to select the region of
interest (ROI). In the second stage, we utilized a full-resolution network (FRN) to complete
fine segmentation. We also incorporated residual atrous spatial pyramid pooling (R-ASPP)
and a new joint loss function.

Results: The most suitable segmentation result was achieved with a ROI size of 32 × 32.
To verify the validity of each part of the method, ablation studies were performed, which
showed that the best segmentation results were obtained when FRN, R-ASPP and the
combined loss function were used simultaneously. Under these conditions, the obtained
Dice similarity coefficient (DSC) value was 87.93% and the F2-score (F2) value was
90.69%.We also innovatively developed a visual clinical diagnosis system that can provide
effective support for clinical diagnosis and treatment decisions.
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Conclusions: We created the MMOC-Net method to perform the automated
segmentation task of CMBs in an SWI and obtained better segmentation performance;
hence, this pioneering method has research significance.

Keywords: cerebral microbleed, medical micro-object, image segmentation, susceptibility weighted imaging, deep
learning

1 INTRODUCTION

Cerebral small vessel disease (CSVD) refers to a combination of
clinical, imaging and pathological manifestations triggered by
various types of small vessel and capillary lesions in the brain,
with cerebral microbleeds (CMBs) being one of the main
manifestations (Greenberg et al., 2009; Pantoni, 2010). CMBs
have been proven to be a diagnostic indicator for a variety of
cerebrovascular diseases, such as stroke, dysfunction, dementia
and cognitive impairment. The number, distribution, and size of
CMBs are important imaging-based indicators that are used for
clinical diagnosis and treatment (Shuaib et al., 2019). For
example, the lobar distribution of CMBs may be used to
indicate the risk of cerebral amyloid angiopathy (Farid et al.,
2017). For patients, improvements in CMB detection and
segmentation accuracy are beneficial to reduce the
psychological stress and economic burden caused by
misdiagnosis. For physicians, the efficient detection and
segmentation of CMBs can effectively improve efficiency, and
it can help physicians fully grasp the optimal treatment time
(Yakushiji, 2015). Automated segmentation of CMBs is beneficial
to save the time of both physicians and patients, which in turn
provides opportunities for monitoring and analysing numerous
neurologic diseases.

CMBs are a type of brain parenchymal lesion that occur
when small blood vessels and capillaries rupture. CMBs can
appear as small ovoid (<10 mm in diameter) hypointense
signals in susceptibility weighted imaging (SWI) sequences
of magnetic resonance imaging (MRI) and are extremely
representative clinical microlesions (Wardlaw et al., 2013;
Smith et al., 2019). However, the automated segmentation
of microlesions represented by CMBs is a more difficult and
challenging clinical task because CMBs are widely distributed
throughout the brain. They are not only extremely small but
also share a high degree of visual similarity with CMB
analogues (such as calcification, rust, and veins) (Myung
et al., 2021). In addition, CMBs present a blooming effect
on MRI images, meaning that the volume of CMBs increase
with increasing echo time, and various acquisition settings
may affect CMB sizes (Rashid et al., 2021). Therefore, there is a
significant need to implement automated segmentation of
CMBs in SWI sequences, which is difficult but possible.
However, most of the previous studies are limited to CMB
target detection (Dou et al., 2016; Liu et al., 2019; Al-masni
et al., 2020; Li et al., 2021b; Myung et al., 2021; Rashid et al.,
2021), and there is a lack of related research on the automatic
segmentation of CMBs.

Aiming at the difficulty of automated segmentation of CMBs
in SWI sequences, we proposed a new medical micro-object

cascade network (MMOC-Net) to perform automated
segmentation of CMBs. This network consists of two stages,
which can consider global and local information, and can
achieve better feature extraction accuracy (Hu et al., 2020). In
the first stage, a modified U-Net module is used to segment the
potential CMB regions. In the second stage, the final
segmentation task is performed by using a full-resolution
network (FRN) at each region of interest, and residual atrous
spatial pyramid pooling (R-ASPP) is added to extract multiscale
information.

The major contributions of our work are as follows:

1) Research perspective: Few related studies on the automated
segmentation of CMBs have been performed thus far, and we
provide a more reliable and effective automatic segmentation
system for CMBs. Compared with previous studies, in this
paper, millimetre performance enhancements are a point of
focus. In addition, a new segmentation method for CMBs,
which is of pioneering method with research significance, is
proposed.

2) Research methods: We propose a new MMOC-Net method
to perform segmentation. The FRN in the network can
generate full-resolution features to boost the pixel-level
segmentation performance. R-ASPP can extract
multiscale image features based on the FRN to
circumvent the risk of gradient explosion. The joint loss
function can consider various evaluation metrics to ensure
the best segmentation performance.

3) Evaluation metrics: We propose two evaluation indices, the
Dice similarity coefficient (DSC) and the F2-score (F2), which
are suitable for medical micro-objective segmentation. The
DSC is the primary metric that is used to evaluate medical
segmentation and can reflect the proportion of pixels correctly
identified by the model. F2 can fully emphasize the
importance of the sensitivity (SEN) on the premise of
considering the precision (PRE). The research concept in
this paper is in accordance with practical clinical needs and
can be implemented to effectively reduce the rate of missed
clinical diagnosis. The results of this study show that the
method can perform well in terms of some important indices,
such as DSC and F2.

4) Application value: Considering the lack of sufficient and
available public datasets for CMB segmentation, we collect
all available SWI images from 316 patients (625 pieces)
with CMBs and use manual markers to obtain labels. To the
best of our knowledge, this is currently the largest datasets
used in automated CMB segmentation. It can also be
applied to more segmentation tasks due to its good
generalizability.
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2 RELATED WORKS

The detection and segmentation of CMBs have always been the
focus of clinical applications. The traditional CMB detection task
needs to be visually performed with the aid of valid visual scoring
scales, such as the microbleed anatomical rating scale (MARS)
(Gregoire et al., 2009) or the brain observer microbleed scale
(BOMBS) (Cordonnier et al., 2009). Traditional detection
methods include technologies based on unified segmentation
(Seghier et al., 2011), support vector machines (SVMs) (Barnes
et al., 2011) or radial symmetry transformations (RSTs) (Bian
et al., 2013; Kuijf et al., 2013). However, traditional methods
suffer from low detection efficiency, poor accuracy, and high
missed diagnosis rates and have been gradually replaced by deep
learning methods.

In recent years, image processing methods based on deep
learning techniques have been gradually proposed and promoted.
Some studies on fully automated medical image detection and
segmentation have been performed. Currently, the most
traditional deep learning method is the convolutional neural
network (CNN) (Havaei et al., 2017). CNN architectures use
two paths to extract image features at various scales. The fully
convolutional network (FCN), which is a tree-structured
multitask network, was constructed with high efficiency for
end-to-end network construction (Shelhamer et al., 2017).
However, FCNs still suffer from difficulties in fine
segmentation tasks. Ronneberger proposed a U-shaped
convolutional network called U-Net, which performs well on
various medical image segmentation tasks (Ronneberger et al.,
2015). However, U-Net does not work well on medical micro
target fine segmentation tasks.

There is a significant need to implement automated
segmentation of CMBs in SWI sequences, which is difficult
but possible. Myung et al. (2021) proposed a two-stage
approach to conduct CMB detection based on the you only
look once (YOLO) model, which achieved an SEN of 80.96%.
Rashid et al. (2021) proposed DEEPMIR to detect CMBs and iron
deposits, and an average SEN of between 84%–88% was achieved.
Li et al. (2021b) used feature enhancement in CMB detection, and
an SEN of 90.00% was achieved, suggesting that feature
enhancement can be a helpful algorithm to enhance the deep
learning model. Dou et al. (2016) performed CMB detection via
3D convolutional neural networks, and a sensitivity of 92.31%
was achieved. Liu et al. (2019) presented a two-stage CMB
detection framework that achieved a sensitivity of 93.50%.
These studies demonstrate the potential of applying deep
learning techniques for improving efficiency and accuracy in
the diagnosis of CMB. However, these studies are mostly limited
to target detection, and few relevant studies have been found to
perform automatic CMB segmentation on SWI sequences.

3 METHODOLOGY

Medical image segmentation is a challenging task in the field of
computer vision. Because the segmentation target of CMB lesions
is small and the effect of the single-step segmentation method is

limited, we adopt the two-stage segmentation model MMOC-
Net, which consists of coarse to fine segments to improve the
detection and segmentation effect of lesions, and its overall
framework is shown in Figure 1.

The first stage is coarse segmentation, and we utilize the
improved U-Net to segment a whole original image. The focus
of this stage is not on the PRE value of lesion contour
segmentation but on the SEN value of lesion detection to
ensure the full detection of potential lesions. The second stage
is fine segmentation in which ROI regions of a certain size are
selected, centred on the lesions detected in the first stage
(including sizes of 16 × 16, 32 × 32, 64 × 64, and 128 × 128)
and input into the FRN for local fine segmentation. This process
ensures that segmentation contours are accurate, excludes false
positives and increases the overall PRE in micro-object
segmentation.

3.1 Data Source
Our data were obtained from cranial MR images of 316 patients
with CMBs at the Department of Neurology, Southwest Hospital,
ArmyMedical University, Chongqing, China. The images of each
patient were composed of the original image and the
corresponding manually segmented mask. The imaging data of
each patient contained MRI scans of the brain with various
sequences, including T1, T2 and SWI, of which the SWI
sequence was used. Segmentation masks for all patients were
jointly annotated by two experienced clinicians, providing a
binary image containing manual segmentation for each subject
to ensure the accuracy of the training data.

Considering pertinence and accuracy and ensuring a sufficient
sample size and diversity of the sample distribution, we selected
1–4 scans from the complete images of each patient, for a total of
625 scans. These data were divided into two subsets with a ratio of
4:1. In other words, there were 500 pieces of training data and 125
pieces of validation data. This study was reviewed and approved
by the hospital ethics committee under ethics number (B)
KY2021173.

The intensities of MR images are unnormalized data, so we
adopted the min-max normalization method to process the
images for intensity values. In addition, to improve data
utilization and model generalization efficacy, several data
augmentation strategies were used: 1) A random intensity
translation and scaling were applied across each channel with
standard deviation (−0.2~0.2). 2) A random rotation with a 30%
probability of rotation and a rotation degree limited to 180° were
used. 3) Random horizontal and vertical flips were performed
with a 30% probability. 4) Random noise was added.

3.2 Model Construction
3.2.1 First Stage Network
In the first stage, we use the improved U-Net model after
pretraining to coarsely segment the CMB, as shown in Figure 2.

The U-Net model consists of an encoder (used for
downsampling), a decoder (used for upsampling), and a skip
connection and is divided into five stages. 1) Encoding process:
The original encoder is replaced with a residual module (Res-
Block), which can prevent the problem of vanishing/exploding
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gradients to provide a faster convergence rate and reduce the risk
of overfitting. The output channel number of Stage 1 is 32. Stage 2
contains 3 Res-Block S1 modules, and the number of output
channels is 64. Stage 3 contains 1 Res-Block S2 module and 3 Res-
Block S1 modules, and the number of output channels is 128.
Stage 5 contains 2 Res-Block S1 modules and 1 Res-Block S2
module, and the number of output channels is 512. 2) Decoding
process: All deconvolutions are replaced with bilinear
interpolation. The advantage is that no additional training
parameters are needed, which can effectively reduce the model

size and increase the running speed. 3) Skip connection: In each
stage, a skip connection is used to fuse information in the
encoding and decoding processes.

Our Res-Block is defined as:

yl � h(xl) + F(xl,Wl) (1)
xl+1 � f(yl) (2)

where xl and xl+1 are the input and output of the l residual unit, F
is the residual function, Wl is the weight coefficient of the lth

FIGURE 1 | Overall framework of MMOC-Net. (A) Data collection and annotation process; (B) The first-stage coarse segmentation method uses Res U-Net to
perform preliminary segmentation and identify the region of interest (ROI); (C) The second-stage fine segmentation method: FRN stands for full resolution network. The
ROI regions are selected and input into the FRN to complete fine segmentation. (D) Automatic segmentation can obtain the distribution, quantity and size of lesions and
support clinical decision-making.
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layer, h(xl) � xl is the constant mapping, and f () represents the
rectified linear unit (ReLU) activation function.

Based on the above information, the learning characteristics
from l to L can be obtained as:

xL � xl +∑L−1
l�1

F(xi,Wi) (3)

Using the chain rule, the gradient of the reverse process can be
found as:

zloss

zxl
� zloss

zxL
×
zxL

zxl
� zloss

zxL
+⎛⎝1 + z

zxL
∑L−1
l�1

F(xi,Wi)⎞⎠ (4)

Here, loss is the loss of the learning process, and zloss
zxl

is the
gradient of the loss arriving at L. The number one represents the
fact that a shortcut can propagate the gradient without decay,
while the residual gradient on the other side needs to be passed
through the weighted layer.

3.2.2 Second Stage Network
In the second stage, we propose an FRN and added the R-ASPP
module using a fine segmentation method to obtain the final
segmentation result, as shown in Figure 3.

The FRN includes two convolutional layers, six residual
modules and 1 R-ASPP module. We segment the target image
patch centred on the region that is located by coarse
segmentation. Then, we use the target image patch as the
input of the FRN to focus on the precise segmentation of the
target area without searching for the lesion on the entire image.
After the target image patch is input to the first layer of

convolution, a 32-channel feature map can be obtained, and
then 3 Res-Block S1 modules are used to extract shallow features.

In the middle of the FRN, we innovatively add the R-ASPP
module to extract multiscale features, the next 3 Res-Block S1
modules to extract deep features, and finally compress the
features into one channel through CONV OUT to complete
the result output. This module can perform parallel sampling
of dilated convolutions with different sampling rates for a given
input, and it can also prevent gradient disappearance or
explosion.

In the R-ASPP module, feature maps are input into the
dilated convolutions with dilation rates of 6, 8, 12, and 1 in
the flat pooling layer. Their outputs are integrated and input
into a convolution layer with a kernel size of 1 × 1 to obtain
the number of channels consistent with that of the input
feature map. The output of the previous convolutional layer
and the input feature map are connected by shortcuts to
obtain the result, and the output is fR−ASPP, which is defined
as follows:

fASPP � K1 ⊙ ⎛⎝∑3
i�1
Kdi ⊙ f0 + AP(f0)⎞⎠ (5)

fR−APSS � fASPP + h(f0) (6)
where ⊙ denotes the convolution operation, f0 is the input feature
map, AP denotes the average pooling operation, K1 represents
that the size of the convolution kernel is 1 × 1, Kdi represents that
the size of the convolution kernel is 3 × 3, the dilation rate is di =
(4,8,12), and h represents the identity mapping of the shortcut
connection.

FIGURE 2 | The first stage of the method. (A) U-Net model for coarse segmentation: The number represents the number of channels, the encoder is replaced with
Res-Block during the encoding process, and the deconvolution is replaced with bilinear interpolation during the decoding process. (B) Res-Block S1/S2: The Res-Block
S1 module contains two convolutional layers and uses shortcut connections to ensure the consistency of the gradient. The Res-Block S2 module adds a convolutional
layer to the base of S1.
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3.3 Modified Loss Function
Due to the imbalance between the pixels of CMBs and the background,
binary cross entropy (BCE) loss and dice loss (DL) are taken as the loss
functions. In addition, we creatively add the SEN loss function. The
functions and advantages of each loss function are discussed below.

BCE is derived from the maximum likelihood function under
the condition of a Bernoulli distribution and has been widely used
in object classification and image pixel-level segmentation. BCE is
used to measure the difference between two probability
distributions of a given random variable or an event set. The
smaller the value is, the smaller the difference between the two
probability distributions. BCE can be defined as follows:

LBCE(ŷ, y) � − 1
N

∑N
i�1
[yilog(ŷi) + (1 − yi)log(1 − ŷi)⎤⎦ (7)

DL is more suitable for unbalanced tasks such as medical
image segmentation. The DL loss value represents the predictive
performance of the trained model. DL can be defined as:

LDice(ŷ, y) � 1 −
2∑N
i�1
ŷiyi

∑N
i�1
ŷi + ∑N

i�1
yi

(8)

In the CMB segmentation task, there is an imbalance between
the foreground and the background. In terms of the clinical needs
of the CMB segmentation task, an improvement in SEN is more
important than an improvement in PRE. Therefore, we propose
an SEN loss function whose value represents the missed diagnosis
rate; it can be defined as:

LSen(ŷ, y) � 1 −
∑N
i�1
ŷiyi

∑N
i�1
yi

(9)

Here, ŷ and y are the model prediction result and the real label
image,N is the number of pixels in the input image, and ŷi is the
value of pixel i in ŷ.

In conclusion, BCE can improve the stability of model
training, DL can make the model prediction results more
closely resemble the expected value, and the SEN loss function
can improve the SEN of model training. Therefore, we combine
three types of loss functions to construct the total loss function as
follows:

Ltotal � LBCE + LDice + λLSen (10)

FIGURE 3 | The second stage of the network architecture. (A) FRN framework: This framework removes the downsampling structure and always extracts image
features at the original input resolution to effectively prevent lesion information loss. (B) R-ASPP module: In the middle of the FRN, we innovatively add the R-ASPP
module.
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Here, the value of λ can affect the degree of the influence of the
SEN loss value, and the larger the value is, the higher the weight of
the influence of SEN. We determine the optimal value of λ after
many pre-experiments. The focus of the coarse segmentation
stage is to detect as many potential lesions as possible, so we set
λ = 10. The focus of the fine segmentation stage is to balance SEN
and PRE, so we set λ = 1. In model training, the total loss function
value gradually decreases until it becomes stable, and the training
model with the best prediction performance can be obtained.

3.4 Training Details
The training process is accelerated using a GPU, and the details of
the running environment are shown in Table 1.

In the coarse segmentation model training stage, all images are
scaled to 352 × 448, and the input size of the ROIs in the fine
segmentation model is 32 × 32 pixels. This design ensures that the
lesion is of a detectable size while not exceeding the operating
memory limit due to the image being too large. Both stages use the
Adam optimizer to update the network weights, and the initial
learning rate η is 0.0002.

During the training process, we also employ early stopping and
cross-validation strategies, aiming to improve the persuasiveness of
the experimental results and prevent the occurrence of overfitting
during training. In each fold of the training set, we use early stopping
and five-fold cross-validation strategies to select the number of
epochs and the hyperparameters. We set the maximum number
of data training iterations to 500 epochs and the patch size to 6. We
also use the gradient checkpoint operation of PyTorch to reduce
memory consumption.

3.5 Evaluation Metric
Confusion matrices are often used to evaluate the classification or
segmentation tasks in deep learning, and ETP, ETN, EFP, and EFN

are used to represent the number of pixel points in the true-
positive, true-negative, false-positive and false-negative areas,
respectively. The SEN, PRE, DSC, F2, Jaccard similarity
coefficient (JSC) and Matthew correlation coefficient (MCC)
are used to quantitatively evaluate the network segmentation
results. The range of values for each index is (0–1), and a larger
value represents a better segmentation effect.

SEN and PRE are important measures of missed diagnosis and
misdiagnosis, respectively. Missed diagnosis and misdiagnosis are
pairs of contradictions, and it is often impossible to completely
prevent them. In actual clinical diagnosis and treatment, the
incidence of a missed diagnosis of CMBs is significantly higher
than that of a misdiagnosis, and the consequences of a missed

diagnosis are far greater than those of a misdiagnosis. The
occurrence of a missed diagnosis may incur extremely high
treatment risks and treatment costs, which cause irreversible
clinical consequences. Even if a misdiagnosis occurs,
subsequent diagnosis and treatment can be implemented, and
serious consequences rarely occur. Therefore, it is more
important to reduce the risk of missed diagnosis in CMB
diagnosis. SEN and PRE can be expressed as:

SEN � ETP

ETP + EFN
(11)

PRE � ETP

ETP + EFP
(12)

The DSC is a mask similarity metric that measures how similar a
predicted image is to the pixel spots of the ground truth. DSC
describes the degree of similarity by evaluating the ratio of the area of
the overlapping part of the two ensembles to the total area and is
calculated as:

DSC � 2
∣∣∣∣Ra ⋂ Rb

∣∣∣∣
|Ra| + |Rb| (13)

Here, Ra and Rb represent the image area set and ground
truth value set segmented according to the DSC∈ (0,1) algorithm;
the larger the value is, the better the fit between the model
segmentation area and the real area.

The F-score comprehensively weighs the PRE and SEN
indicators. F2 is a special case of the F-score, and it focuses more
on the SEN indicator. Our optimization principle ensures a high
SEN value under the premise of ensuring that the PRE value is
acceptable. This design is intended to reduce the clinical missed
diagnosis rate as much as possible under the premise of ensuring a
certain diagnostic accuracy rate. Therefore, the definition of F2 is
more in line with the needs of this research and can be defined as:

F2 � 5 · PRE · SEN
(4 · PRE) + SEN

(14)

We take the optimization of DSC and F2 as the primary goal
and take DSC and F2 as the primary evaluation indices. To fully
evaluate the effect of segmentation, we also introduce JSC and
MCC as secondary evaluation indicators; they can be expressed as

JSC � ETP

ETP + EFN + EFP
(15)

MCC � ETP · ETN − EFP · EFN����������������������������������������(ETP + EFP)(ETP + EFN)(ETN + EFP)(ETN + EFN)
√

(16)
The raincloud plot is a data visualization tool that provides more

statistical information. It draws on the advantages of a variety of
traditional statistical graphs and visualizes the original data, probability
density and key statistical information (i.e., the median, average, and
confidence interval) (Allen et al., 2019). From the term raincloud,
“rain” represents the original data lattice, and “cloud” represents the
data distribution. Box plots, central tendency information and error
bar information are also added to the figure to further improve the
statistical information. In a raincloud plot, redundant mirroring

TABLE 1 | Summary of the experimental environment.

Software/Hardware Model/Parameter

CPU Intel Xeon (R) Gold 6246R CPU @ 3.30 GHz
GPU NVIDIA Tesla V100
RAM 256 GB
Hard disk 1 TB
System Cent Os 8
Framework Python 3.7, Pytorch 1.3
Module SimpleITK, Nibabel, TorchVison, Scipy, Numpy, etc.
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probability distributions are replaced with box plots and original data
points and can provide important information such as data
relationships and data distributions.

Medical datasets oftenhave the problemof unbalanced categories, so
we additionally choose the P-R curve to intuitively reflect the
segmentation effect of the model. SEN and PRE can be used to
draw precision-recall (P-R) curves, and the model performance can
be better judged by the inclusion relationship of the P-R curve. The area
under the P-R curve can be defined as the average PRE (AP) value. The
higher this value is, the better the overall classification effect of the pixels.

4 RESULTS

4.1 MMOC-Net Segmentation Results
In Table 2, the segmentation results are presented for the
validation set using an ROI size of 32 × 32. An average DSC
value of 87.93% for five-fold cross-validation and an average F2
value of 90.69% were achieved.

The total loss values and SEN changes at each epoch of themodel
are plotted and detailed in Figure 4. The results show that as the
number of iterations increases, the total loss value decreases, the SEN
value increases, and the convergence of our model is fast.

4.2 Effectiveness Comparison of Region of
Interest Sizes
To investigate the effect of the ROI size on model performance, we
compare the segmentation results of the four ROI sizes. The results

show that the best segmentation results can be obtained when the
size is 32 × 32. A DSC value of 87.93% and an F2 value of 90.69%
were achieved under these conditions, as detailed in Table 3.
Therefore, a size of 32 × 32 is adopted for each ablation
combination in the later text.

The raincloud plots of DSC and F2 of the four ROI sizes are
presented in Figures 5A,B; from these plots, we select the best ROI
size. The results based on the raincloud plot for the 32 × 32 size have a
better distribution of data, and the DSC and F2 values are closer to the
high-score region. For the box plot, an overall segmentation accuracy
improvement is evident with dimension a as well as the median and
mean numbers of DSC and F2. Therefore, 32 × 32 is the optimal size
for capturing image features with optimal segmentation and stability.
The P-R curves of the four ROI sizes are presented in Figure 5C, and
the results show that the inclusion relationship of the 32 × 32 size is

TABLE 2 | Segmentation performance (%).

Metrics Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean

DSC 84.42 ± 14.55 90.84 ± 7.38 87.76 ± 8.19 88.72 ± 10.18 87.85 ± 11.19 87.93 ± 10.30
F2 86.65 ± 14.95 92.88 ± 6.10 90.75 ± 7.67 91.38 ± 7.94 91.70 ± 6.21 90.69 ± 9.39
SEN 89.76 ± 17.66 95.34 ± 6.79 94.74 ± 8.46 95.03 ± 8.81 94.50 ± 11.02 93.87 ± 10.55
PRE 79.68 ± 21.08 86.74 ± 12.89 81.74 ± 15.67 83.20 ± 15.52 82.07 ± 16.65 82.69 ± 16.36
JSC 70.07 ± 21.43 82.78 ± 12.23 77.42 ± 14.36 78.96 ± 14.55 78.32 ± 15.45 78.11 ± 15.60
MCC 83.61 ± 16.01 90.92 ± 8.19 87.51 ± 7.38 89.16 ± 8.96 87.34 ± 20.63 87.72 ± 12.23

FIGURE 4 | Variations in the loss and SEN values at different epochs. (A) Variations in the loss values at different epochs. (B) Variations in the SEN values at different
epochs.

TABLE 3 |Comparison of the four ROI size segmentation performance results (%).

Metrics 16 × 16 32 × 32 64 × 64 128 × 128

DSC 86.09 ± 11.98b 87.93 ± 10.30a 85.62 ± 11.92 85.23 ± 12.02
F2 89.13 ± 10.83 90.69 ± 9.39a 90.24 ± 9.90b 89.83 ± 10.42
SEN 91.63 ± 12.47 93.87 ± 10.55b 93.88 ± 11.19a 93.15 ± 13.24
PRE 83.82 ± 16.60a 82.69 ± 16.36b 80.89 ± 17.06 80.43 ± 17.62
JSC 77.29 ± 16.09b 78.11 ± 15.60a 76.49 ± 16.46 75.78 ± 17.34
MCC 86.93 ± 10.72b 87.72 ± 12.23a 86.57 ± 10.54 86.20 ± 10.69

aranked first.
branked second.
Note: Bold values represent the best results in the table.
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significantly better than those of the other sizes, and the area under the
curve is the largest (0.915).

We visually display the segmentation results of the four ROI sizes to
contrast the segmentation effect of various ROI sizes, as shown in
Figure 6. When the 32 × 32 size is utilized, the highest DSC value is
achieved, and the segmentation details are closer to the ground truth
than those of the other sizes. The apparent risks ofmissed diagnosis and
misdiagnosis are lower and have the best segmentation performance.

4.3 Effectiveness Comparison of Ablation
Combinations
To verify the validity of the components implemented in our
method, we compare the segmentation performance of different

fusion combinations. The results are compared separately by
removing each segment, and the results show that MMOC-Net
achieves the best segmentation results, with a DSC value of
87.93% and an F2 value of 90.69%. Table 4 for details.

We utilize raincloud plots to compare the effectiveness when
the four ablation combinations are chosen and aim to retrieve the
best ablation combination, as shown in Figures 7A,B. In the
raincloud plot, the data distribution of DSC and F2 in MMOC-
Net is significantly better than those of the other combinations,
and most of them are distributed in high-score regions. In the
boxplot, the overall effect of the full MMOC-Net is increased, for
both the medians and means of DSC and F2. Therefore, using
MMOC-Net, including FRN, R-ASPP and the joint loss function,
a better segmentation effect and stability can be obtained. The

FIGURE 5 | Comparison of the segmentation performance for the four ROI sizes. (A) Comparison of the DSC values in the raincloud plot for the four ROI sizes. (B)
Comparison of the F2 values in the raincloud plot for the four ROI sizes. (C) Comparison of the P-R curves of the segmentation performance for the four ROI sizes.
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P-R curves of the four ablation combinations are shown in
Figure 7C. The results show that the inclusion relationship of
MMOC-Net is significantly better than those of the other
combinations and has the largest area under the curve (0.915).

In this paper, the results of the four ablation combinations are
demonstrated, and the segmentation performance results of the

different methods are visually compared, as shown in Figure 8.
The w/o FRNmodel has less effective segmentation performance,
and more incorrect results are obtained. The w/o R-ASPP model
has poor segmentation performance, and key lesion points are
easily missed. The SEN value of w/o L-SEN is low, and leakage
segmentation appears more frequently. Relative to other ablation

FIGURE 6 |Comparison of the masks for the four ROI sizes. The columns from left to right represent the original image, the ground truth, the 32 × 32 size (ours), the
16 × 16 size, the 64 × 64 size, and the 128 × 128 size; the rows from top to bottom represent case Nos. 1–4, respectively. In case 1, the lesion in the upper right corner
was correctly predicted by using the 32 × 32 size, while using the other three sizes, the diagnosis was missed or a misdiagnosis was made. In case 2, the small lesion in
the lower right corner was correctly predicted by using the 32 × 32 size, whereas using the other three sizes, the diagnosis was missed. In case 3, the number and
distribution of the lesions were correctly predicted using the 32 × 32 size, whereas using the other three sizes, the diagnosis wasmissed. In case 4, the result using the 32
× 32 size was closest to the number and distribution of the ground truth, while using the other three sizes resulted in missed diagnoses or made misdiagnoses.

TABLE 4 | Comparison of the effectiveness of the four ablation combinations (%).

Metrics W/o FRN W/o R-ASPP W/o L-SEN MMOC-Net(Ours)

DSC 79.76 ± 11.32 85.84 ± 11.40 87.10 ± 10.91b 87.93 ± 10.30a

F2 88.73 ± 8.50b 89.19 ± 9.93 88.19 ± 10.57 90.69 ± 9.39a

SEN 96.12 ± 8.96a 92.00 ± 11.64 89.20 ± 12.77 93.87 ± 10.55b

PRE 68.89 ± 15.27 82.91 ± 16.39b 87.52 ± 15.41a 82.69 ± 16.36
JSC 67.10 ± 14.86 76.71 ± 15.40 78.60 ± 15.01a 78.11 ± 15.60b

MCC 81.41 ± 9.72 86.70 ± 10.24 87.77 ± 9.98a 87.72 ± 12.23b

aranked first.
branked second.
Bold values represent the best results in the table. W/o, without; FRN, full-resolution network; R-ASPP, atrous spatial pyramid pooling; L-SEN, Loss of sensitivity.
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combinations, the segmentation profile of MMOC-Net is the
closest to the ground truth, indicating higher segmentation
accuracy.

4.4 Comparison With Previous Studies
Ourmethod aims at the automatic segmentation of CMBs, and its
comparison with previous studies can be divided into two aspects.
On the one hand, our method is comparable to studies on CMB
detection; on the other hand, our method is comparable to studies
on segmentation of various objects in the brain.

In deep learning research on CMBs, most previous studies
limited research to target detection, and there are few studies on
the automatic segmentation of CMBs. Taking CMBs as the

research object, we compare our segmentation research with
previous detection research. The results show that for the
same indicators, such as SEN, PRE, and FPavg, better results
are achieved in this study than in previous studies, as shown in
Table 5. Possible reasons for this discrepancy include differences
in data sources, method construction, and mask types. Compared
with target detection, the evaluation indicators of segmentation
research are more comprehensive, and additional information
such as lesion size, location, and volume can be obtained.

In a comparison of automated segmentation studies (Duan
et al., 2020), implemented CMB segmentation in non-SWI
sequences, but a DSC of only 50.30% was achieved. Fan et al.
(2022) implemented 3D segmentation for CMBs, but a DSC of

FIGURE 7 |Comparison of the effectiveness of the four ablation combinations. (A)Comparison of the DSC values in the raincloud plot of the ablation combinations.
(B) Comparison of the F2 values in the raincloud plot of the ablation combinations. (C) Comparison of the P-R curves of the segmentation performance results of the
ablation combinations.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org July 2022 | Volume 10 | Article 93731411

Wei et al. Medical Micro-Object Cascade Network

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


only 72.00% was achieved. There have also been studies on
brain vessels (Dang et al., 2022), haemorrhage strokes (Li et al.,
2021a) and white matter hyperintensities (Li et al., 2018). In
our study, an excellent performance, with a DSC of 87.93%, is

achieved for the automatic segmentation of CMBs, as shown in
Table 6.

4.5 Development of Visualization System
To improve the generalization ability of the method in this
paper, we also innovatively developed visual automatic
segmentation software, as shown in Figure 9. In practical
applications, clinicians can efficiently and quickly obtain
segmentation results based on deep learning, providing
effective support for clinical diagnosis and treatment
decisions. Our system has the advantages of convenience,
speed and efficiency. After the operator selects the original
image and segmentation method, the segmentation result can
be automatically output. Using our system, the threshold for
physician operation is lowered. As a result, this system can
become more popular and may be applied in the majority of
primary hospitals.

FIGURE 8 | Comparison of the masks of the four ablation combinations. The columns from left to right represent the original image, the ground truth, the MMOC-
Net model (ours), w/o FRN, w/o R-ASPP, and w/o L-SEN; the rows from top to bottom represent case Nos. 1–4, respectively. In case 1, the lesion in the upper right
corner is correctly predicted by only MMOC-Net, while missed diagnoses andmisdiagnoses were obtained using the other three models. In case 2, the small lesion in the
lower right corner is correctly predicted only by MMOC-Net, while miss diagnoses occurred using the other three models. In case 3, the number and distribution of
lesions are correctly predicted by MMOC-Net, while miss diagnoses occurred using the other three models. In case 4, MMOC-Net most closely approximates the
number and distribution of the ground truth, whereas using the other three models obtain missed diagnoses and misdiagnoses.

TABLE 5 | Comparison of previous studies on the detection of CMBs and ours.

Research DSC SEN PRE FPavg

Myung et al. (2021) — 66.90 79.80 2.10
Rashid et al. (2021) — 84.00 59.00 —

Li et al. (2021b) — 90.00 76.40 —

Dou et al. (2016) — 92.26 42.67 2.90
Liu et al. (2019) — 93.50 75.50 1.63
Al-masni et al. (2020) — 93.63 61.94 1.42
Ours 87.93 93.87 82.69 0.16

Note: “—” means that this evaluation index was not obtained in this study. Bold values
represent the best results in the table.
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5 DISCUSSION

The segmentation of medical micro-objects is of great
significance to the planning of clinical diagnosis and

treatment, and it has become a popular issue in recent
research. CMBs have been recognized as important biomarkers
for the diagnosis of cerebrovascular diseases and the assessment
of neurological dysfunction (Greenberg, 2021). However, in
clinical practice, manual labelling of CMBs is laborious and
diagnosis can easily be missed. There were few previous
studies on automated image processing of CMBs, and they
only focused on target detection. Few related studies on the
automated segmentation of CMBs in SWI have been
performed thus far. Automated segmentation of CMBs is
beneficial to alleviate the work of physicians and improve the
efficiency of diagnosis and treatment. The CMB automated
segmentation task is performed for the first time in this study,
which has seminal research significance and application
prospects.

TABLE 6 | Comparison of previous brain objects segmentation studies and ours.

References DSC F1 SEN PRE

Duan et al. (2020) 50.30 71.30 — —

Fan et al. (2022) 72.00 71.80 76.50 71.80
Dang et al. (2022) 79.32 — — —

Li et al. (2021a) 80.33 — — —

Li et al. (2018) 78.80 77.29 — —

Ours 87.93 87.93 93.87 82.69

Note: “—” means that this evaluation index was not obtained in this study. Bold values
represent the best results in the table.

FIGURE 9 | Visualization system for the automatic segmentation of medical small targets. (A) Interface of system startup; (B) Selection of the original image and
segmentation method; (C) Running the segmentation to obtain the results; (D) Exporting the segmentation results.
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In this study, we construct a new MMOC-Net model that
focuses on the segmentation of clinical microsamples and is
implemented in a cascade. To the best of our knowledge, this
is the first study to complete automated CMB segmentation in
SWI sequence, which utilizes a new deep learning technique to
efficiently analyze image information. In the cascade architecture,
the first stage focuses on excluding background regions and
screening potential candidate regions. We have developed a
modified U-Net model for this stage, and the impact of the
SEN in the modified loss function is valued. The second stage
focuses on a small number of candidates and excludes false-
positive regions with similar appearances to CMBs. At this stage,
we employ FRN integrated with R-ASPP to identify CMBs. This
results in higher SEN values and lower false-positive rates, which
can better meet the requirements of accuracy.

In comparison with previous studies, the segmentation
performance of MMOC-Net is excellent. This performance is
better than the performance of similar studies of previous target
detection and segmentation. The results of this study confirm that
a properly trained MMOC-Net can achieve the accuracy of
experienced clinicians and greatly improve the efficiency of
diagnosis and treatment.

Compared with previous segmentation studies, the advantages
of our method are as follows: 1) We adopt the implementation of
coarse to fine segmentation, and FRN integrated with the R-ASPP
module is beneficial for extracting full-resolution, multiscale
image features, efficiently detecting CMB lesions. The above
measures can consider global and local information and can
achieve better feature extraction accuracy. 2) We propose a
modified loss function, creatively add the optimization goal of
sensitivity, and adopt different weight settings in the two-stage
training, which is beneficial to reduce the missed diagnosis rate as
much as possible on the premise of ensuring a certain precision.
3) In this paper, the ablation study is used to determine the
optimal ROI size. With a size of 32 × 32, global and local
information can be balanced well, and better feature extraction
accuracy can be achieved.

Compared with previous research on object detection, there
are several possible reasons as to why our method, which focuses
on segmentation, can still achieve relative advantages: 1) Method:
In our method, innovative improvements have been made in the
network structure, parameter settings and objective function. 2)
Label type: There are differences in annotations between
detection and segmentation; detection uses bounding box
labels, while segmentation uses fine-grained pixel-level labels.
Compared with other detection methods, we use pixel-level
accurate data for training and achieve better prediction results.
3) Information mining: The evaluation metrics for the accurate
segmentation of CMBs generated by our method are more
comprehensive and can provide more information, such as
distribution, quantity, and size, which can be combined with
relevant research on risk factors to provide effective support for
clinical diagnosis and treatment decisions (Whitwell et al., 2015).

In practical applications, this method has high clinical
significance. 1) Automation: In clinical screening and diagnosis,
manual detection and segmentation of CMBs is an expensive,
tedious and time-consuming task. Rapid and accurate automated

CMB segmentation can alleviate the burden of clinicians so that they
can focus on higher-level clinical decisions. 2) Effectiveness: CMB
segmentation is highly skill- and experience-demanding for
clinicians, and the labelling accuracy of different clinicians varies
greatly. For example Duan et al. (2020), showed that the DSC of
clinicians with many years of experience in manually segmenting
CMBs is only 57.60%. In contrast, our method is an automated and
standardized segmentation approach based on deep learning, which
can effectively improve the segmentation accuracy and reduce the
risk of missed diagnosis. 3) Visualization: We have also innovatively
developed a visual automatic segmentation system, which has the
advantages of convenience, speed and efficiency. Our system is
conducive to lowering the threshold for physicians to operate.
This can be popularized and applied in the majority of primary
hospitals. 4) Generalizability: The existence of CMBs is related to a
variety of cerebrovascular disease accidents and death risks. After
acquiring CMB segmentation regions by the method in this paper,
clinical information can be extracted from the distribution, quantity
and size of CMBs to provide suggestions for further clinical
interventions for patients.

Our study was well designed and rigorously implemented, but
there were still some deficiencies and room for improvement. We
envision future research directions as follows. 1) This study
focuses on 2D image segmentation without utilizing 3D image
features. In the future, we need to implement 3D layer
segmentation to better utilize the spatialized, stereologic
information of SWI images. In addition, the present study is a
single-centre study with a relatively limited sample size, and it
lacks validation on external datasets. In the future, we need to
include more datasets with small medical micro-objects and
perform studies with large sample sizes and multicentre
validation. 2) There is still room to improve the segmentation
performance of this method, and the generalization performance
of the newly constructed MMOC-Net needs to be verified. In the
future, we need to continue to optimize the relationship between
the model structure and model parameters, improve the
segmentation performance, and better apply the model in
clinical diagnosis and treatment decisions.

6 CONCLUSION

In summary, we perform the automatic segmentation task of CMB
images in SWI and create a brand-new segmentationmethod (MMOC-
Net) with pioneering research implications. MMOC-Net can improve
the diagnosis and treatment efficiency while reducing the missed
diagnosis rate and can obtain a better segmentation performance
(87.93% DSC and 90.69% F2). Our idea and method can realize the
target detection and fine segmentation of medical micro-objects, which
can make full use of image information to provide clinical decision
support and has great application value and promotion prospects.
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