2,351 research outputs found
An Iterative Procedure for Combining the Advantages of a Multi-Frequency and Multi-Resolution Inversion Algorithm
Starting from the iterative multi�]scaling approach previously studied for monochromatic illuminations, two multi�]resolution strategies for dealing with multi�]frequency inverse scattering experiments have been developed. The first procedure is based on the integration of the iterative multi�]scaling algorithm into a frequency�]hopping reconstruction scheme, while in the second one the multi�]frequency data are simultaneously processed exploiting a multi�]resolution expansion of the problem unknowns. The numerical and the experimental analysis presented in this contribution concern with a preliminary assessment of the reconstruction effectiveness of the proposed approaches in comparison with a monochromatic multi�]step process. This is the author's version of the final version available at IEEE
A Hybrid Approach Based on PSO and Hadamard Difference Sets for the Synthesis of Square Thinned Arrays
A hybrid approach for the synthesis of planar thinned antenna arrays is presented. The proposed solution exploits and combines the most attractive features of a particle swarm algorithm and those of a combinatorial method based on the noncyclic difference sets of Hadamard type. Numerical experiments validate the proposed solution, showing improvements with respect to previous results. (c) 2009 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works
Effects of a trapped vortex cell on thick wing profile
Experimental investigation on the effects originated from a trapped vortex cell on the NACA0024 airfoi
Detection, Location and Imaging of Multiple Scatterers by means of the Iterative Multiscaling Method
In this paper, a new version of the iterative multiscaling method (IMM) is proposed for reconstructing multiple scatterers in two-dimensional microwave imaging problems. The manuscript describes the new procedure evaluating the effectiveness of the IMM previously assessed for single object detection. Starting from inverse scattering integral equations, the problem is recast in a minimization one by defining iteratively (at each level of the scaling procedure) a suitable cost function allowing firstly a detection of the unknown objects, successively a location of the scatterers and finally a quantitative reconstruction of the scenario under test. Thanks to its properties, the approach allows an effective use of the information achievable from inverse scattering data. Morover, the adopted kind of expansion is able to deal with all possible multiresolution combinations in an easy and computationally inexpensive way. Selected numerical examples concerning dielectric as well as dissipative objects in noisy enviroments or starting from experimantally-acquired data are reported in order to confirm the usefulness of the introduced tool and of the effectiveness of the proposed procedure
A SVM-Based Multi-Resolution Procedure for the Estimation of the DOAS of Interfering Signals in a Communication System
In this work, the use of a planar antenna system for the estimation of the directions of arrivals (DOAs) of multiple signals impinging on the receiver has been considered. Towards this end, an efficient multi-resolution method based on a SVM-classifier is proposed for determining a probabilitic map of the DOAs of the unknown interfering signals. Numerical results dealing with multiple interferers scenarios in noisy environments are provided in order to assess the feasibility as well as the capability of the proposed approach
A Planar Electronically Reconfigurable Wi-Fi Band Antenna Based on a Parasitic Microstrip Structure
This report presents the result of the synthesis of an horizontally polarized reconfigurable microstrip antenna
A Linear Multi-User Detector for STBC MC-CDMA Systems based on the Adaptive Implementation of the Minimum-Conditional Bit-Error-Rate Criterion and on Genetic Algorithm-assisted MMSE Channel Estimation
The implementation of efficient baseband receivers characterized by affordable computational load is a crucial point in the development of transmission systems exploiting diversity in different domains. In this paper, we are proposing a linear multi-user detector for MIMO MC-CDMA systems with Alamouti’s Space-Time Block Coding, inspired by the concept of Minimum Conditional Bit-Error-Rate (MCBER) and relying on Genetic-Algorithm (GA)-assisted MMSE channel estimation. The MCBER combiner has been implemented in adaptive way by using Least-Mean-Square (LMS) optimization. Firstly, we shall analyze the proposed adaptive MCBER MUD receiver with ideal knowledge of Channel Status Information (CSI). Afterwards, we shall consider the complete receiver structure, encompassing also the non-ideal GA-assisted channel estimation. Simulation results evidenced that the proposed MCBER receiver always outperforms state-of-the-art receiver schemes based on EGC and MMSE criterion exploiting the same degree of channel knowledge (i.e. ideal or estimated CSI)
A genetic algorithm-assisted semi-adaptive MMSE multi-user detection for MC-CDMA mobile communication systems
In this work, a novel Minimum-Mean Squared-Error (MMSE) multi-user detector is proposed for MC-CDMA transmission systems working over mobile radio channels characterized by time-varying multipath fading. The proposed MUD algorithm is based on a Genetic Algorithm (GA)-assisted per-carrier MMSE criterion. The GA block works in two successive steps: a training-aided step aimed at computing the optimal receiver weights using a very short training sequence, and a decision-directed step aimed at dynamically updating the weights vector during a channel coherence period. Numerical results evidenced BER performances almost coincident with ones yielded by ideal MMSE-MUD based on the perfect knowledge of channel impulse response. The proposed GA-assisted MMSE-MUD clearly outperforms state-of-the-art adaptive MMSE receivers based on deterministic gradient algorithms, especially for high number of transmitting users
Improved Microwave Imaging Procedure for Non-Destructive Evaluations of Two-Dimensional Structures
An improved microwave procedure for detecting defects in dielectric structures is proposed. The procedure is based on the integral equations of the inverse scattering problem. A hybrid Genetic Algorithm is applied in order to minimize the obtained nonlinear functional. Since in nondestructive evaluations the unperturbed object is completely known, it is possible off-line to numerically compute the Green's function for the configuration without defects. Consequently, a very dignificant computation saving is obtained, since the 'chromosome' of the Genetic Algorithm codes only the parameters describing the unknown defect
- …
