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by means of the Iterative Multiscaling Method
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Salvatore Caorsi*, Massimo Donelli**, and Andrea Massa**

Abstract

In this paper, a new version of the iterative multiscaling method (IMM) is pro-
posed for reconstructing multiple scatterers in two-dimensional microwave imaging
problems. The manuscript describes the new procedure evaluating the effectiveness
of the IMM previously assessed for single object detection. Starting from inverse
scattering integral equations, the problem is recast in a minimization one by defining
iteratively (at each level of the scaling procedure) a suitable cost function allowing
firstly a detection of the unknown objects, successively a location of the scatterers
and finally a quantitative reconstruction of the scenario under test. Thanks to its
properties, the approach allows an effective use of the information achievable from
inverse scattering data. Moreover, the adopted kind of expansion is able to deal with
all possible multiresolution combinations in an easy and computationally inexpensive
way. Selected numerical examples concerning dielectric as well as dissipative objects
in noisy environments or starting from experimentally-acquired data are reported in
order to confirm the usefulness of the introduced tool and of the effectiveness of the

proposed procedure.
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1 Introduction

Microwave imaging techniques based on the solution of an inverse scattering problem are
aimed at retrieving an unknown dielectric profile starting from the knowledge of scat-
tered fields radiated by the unknown scenario after the illumination with known incident
electromagnetic waves. Unfortunately, the information content of the data is limited and
consequently the resolution accuracy in the retrieval of the dielectric profile [1]. In many
applications (e.g., demining applications or non-invasive archeological surveys |2, or non-
destructive industrial evaluations [3] and testing [4]), a simple qualitative reconstruction
is not sufficient and a more difficult qualitative retrieval with an higher resolution level
is necessary. In order to fully exploit the information content of the data and to achieve
a sufficient resolution accuracy, multiresolution approaches have been proposed [5]-[10].
The guidelines of these approaches lie in the following idea. It is not necessary to attain
the same resolution level in the overall scenario under test, but different regions of the
investigation domain require different resolution accuracies depending on the homogeneity
of the area.

In this framework, the Iterative Multiscaling Method (IMM) is based on a synthetic
zoom procedure allowing an efficient use of the limited amount of the information content
of inverse scattering data and guaranteeing a sufficient resolution level in the retrieved
image of the investigation domain. Starting from a coarse representation of the investiga-
tion domain, the method iteratively defines a sub-gridding of the area where the scatterers
are located. The approach estimates the scatterers location and occupation area thanks
to the “knowledge” of the scenario under test acquired at the previous steps and ter-
minates when a “stationary” reconstruction is reached. In [9][10], the method has been
successfully applied to the localization, shaping and dielectric permittivity reconstruction
of single inhomogeneous two-dimensional scatterers. In this paper, the IMM is applied
to the reconstruction of multiple objects, in order to assess its effectiveness in resolving

different scatterers.



The manuscript is organized as follows. In Section II, the mathematical formulation of
the IMM is described and detailed for the electromagnetic imaging of multiple scatterers.
Numerical experiments, validating the proposed approach, are presented in Section III.

Finally, (Section IV) brief conclusions follow.

2 Mathematical Formulation

To illustrate the inversion procedure, the theoretical model of the two-dimensional inverse
scattering problem is considered. A bounded investigation domain, D;, embedding an
unknown non-magnetic scattering object, lies in an unbounded homogeneous background
medium of known dielectric characteristics, 7o (Fig. 1). In order to reconstruct the con-
trast function of the unknown object, 7(z,y) = &,(z,y) — 1 — j%};gyg, (z,y) € Do C Dy,
the investigation domain is successively illuminated by a number of V' incident monochro-
matic (f being the working frequency) electromagnetic fields, E} (z,y),v = 1,...,V.
The scattered data, EY..;; (xm(v),ym(v)), My = 1, .., M), v = 1,...,V, are measured
by receiver arrays positioned in M, positions of an observation domain, D), outside
the investigation domain. The electromagnetic model linking the available data and the

structure of 7 is mathematically described by means of the Lippmann-Schwinger integral

equations [11]:
E;)catt(xm(v): ym(’u)) = k(% fDI G?d(xm(v),ym(v) ‘mla y')T(.I', y,)Eg)t(x,a y')dac’dy’, M) = 1: ) M(v)

v=1,...,V
(1)

Egjnc(x’ y) = E;fuot(xa y) - kg /D sz(l', y|$la yI)T(xla yl)E;}ot(xla yl)dxldyl V= 1’ SRR V (2)
I

where Go4 denotes the Green function of the background medium [12]. Due to the non-

linear nature of the problem at hand, nonlinear inversion procedures recast the solution



of Egs. (1)-(2) as the minimization of a cost functional, enforcing fidelity to the data,

defined as follows

@ {r(z,y), (z,y) € Do; Eiyy(x,y), (z,y) € Dr} =
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by assuming a proper representation of the unknown functions. Due to the limited amount
of the information content of the data, the choice of an uniform discretization of the un-
knowns on the overall investigation domain strongly limits the resolution-accuracy of the
reconstruction procedure. In order to reduce the overall blurring effects on the recovered
profile and significantly improving the imaging quality, rather than parameterizing the
problem in term of a large number of pixel values, a number of unknowns equal to es-
sential dimension of the space of the data is looked for. Moreover, in order to guarantee
the required spatial resolution in different regions of the investigation domain, the object
function is represented by means of a multiresolution expansion distributing in a nonuni-
form way the problem unknowns. However, if an a-prior: estimate of the distribution of
the unknowns in the investigation domain needs of a-priori information of the scenario
under test (in principle, not always available), an iterative re-allocation of the unknowns
by means of an adaptive multi-resolution procedure guarantees a blind reconstruction pro-
cedure allowing to insert into the reconstruction process the “acquired” information (at
the previous steps) about the scenario under test. Such an approach has been proposed
in |10] in order to image single scatterers by defining the multi-resolution cost function

whose expression at s-th step results
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where, w, is a weighting function

0 /Lf (xn(r),ynm) ¢ D(sfl)

w(xn(r)a yn(r)) = .
]' Zf ('/Ll”('r)ay”(r)) € D(sfl)

, A

ngyis the area of the n-th discretization domain at the r-th resolution level, and

2 ) ) )
Preyme) = \/(x"(r) - xm(v)) + (yn(m - ym(v)) ' Pagynery = \/(xq(,) - x"(r)) + <yq(,) - y"(r)) .

In order to take into account for the presence of multiple scatterers the IMM needs of the

following procedural operations iteratively repeated at each step, s, of the multi-scaling

approach:

e a Clustering Procedure aimed at defining the number, (), of scatterers in the inves-

(9)

tigation domain and the regions, Dy’, ¢ = 1, ..., (), where the synthetic zoom will

be performed;

e a Retrieval Procedure aimed at reconstructing the dielectric profile in each region,

D(q) defined by the clustering procedure;

e a Termination Procedure aimed at stopping the multi-step procedure when a “sta-

tionary” reconstruction is achieved.

2.1 Clustering Procedure

Let us assume that the grey-level representation of reconstructed dielectric profile of the

scenario under test at s-th step be as in Fig. 2(a). Firstly, the pixel representation of

6



the estimated profile is binarized by thresholding. More in detail, the histogram of the
image (Fig. 2(b)) is examined and an histogram-concavity analysis is employed in order
to define a threshold value, T,. Then, the original image is segmented into two regions

(Fig. 2(c)), namely the object and the background region, as follows

7o ifT(xn(T)a ?Jn(r)) < TT

(5)

Tth (xn(r)a yn(r)) =
Trna elsewhere

being 7,4, the maximum value of the object function in the investigation domain at the
s-th step.
Successively, a noise filtering (Fig. 2(d)) is performed in order to eliminate some arti-

facts and clearly defining the scatterers support by means of the following transformation

To Zf Tth(xjayj) = T0, .7 = 1a'aNp
Tdn(xn(r)ayn(r)) = Tmaz if Tth(ffj,yj) = Toaz> J = 1, -, Np (6)
Tth (mn(r)a yn(T)) elsewhere

where (z;,y;) indicates a neighboring position and N, is the dimension of the complete
neighborhood system of the sub-domain located at (zn,,,; Yn,,,)-

Finally, the object-detection is performed. The binarized image is raster scanned left
to right and top to bottom. The current pixel, (5, ¥n,,) (Fig. 2(e)), is labeled as
belonging to an object or to the background by examining its connectivity to the right-
hand neighbors, (Z;,7;), 7 =1, ., NIS”’). For example, if Tdn(mn(r), yn(r)) = Tynaz, then it is
assigned to the object ¢ to which it is connected. A new object-label (¢ + 1) is assigned
when a transition from a background-pixel to an isolated object-pixel is detected. At the

end of the scan, features such as centroid

(a) (2) () (2)
0 = e Mmoo g Ve TYim (7)
Cs—1) 2 v Yoy = 2
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of connected object-pixels are computed (by assuming that the



positions of the discontinuities of the real and imaginary part of the object function be
the same, as usually happens in physical situations of interest) in order to perform the

synthetic zoom.

2.2 Retrieval Procedure

According to a multi-resolution strategy, an higher resolution level (R = s) is adopted
only for the reduced investigation domains, Dg]()s_l), q=1,...,Q(), where the clustering
procedure estimated the presence of () different objects. Then the dielectric profile is

retrieved by minimizing the multi-object multi-resolution cost function, ®()

s v (s q=1,..,Q); r=1,.,R=s;
o) 7—((q)) (xn(r)’ yn(r)) ) Etog ) (mn(r): yn(T)) ) ) =
ney =1, ..., Ngy; v=1,...,V

{EQ(S) . Z%((v)) . ‘ v (xm(v), ym(v)) -1 Zij((r)) 1 { (9) (:vn( ) yn(r)) (( )) (CUn(r)’ yn(r))

Ny

Efogs) (xn(r)’yn(r)) Gaa (Anw’ pn(nm(v))}‘ } {ZQ(S) E =1 Z =1 Z"w:l

{w(Q) (x"(r)’ yn(r)) |Ezvnc (xn(r): yn(m) - [E;)ogtS) (xnma l/n(r)>
T E“N;T)) 1{ )) (x“m’ y“m) Epy” (xum’ yu(,)) Gaa (A“w puw"(r))}] ‘}2}
(12)

where

(q) o 0 Zf (xn(n yn(r)) ¢ Do(s 1)

w (‘rn(r)a yn(r)) - ) (q)
1 Zf (‘/En(rﬁyn(r)) € DO(S—l)

and assuming that Qs—o) = 1.

Because of the multi-scaling method is no dependent on the definition of the cost func-

tion or the minimization algorithm, actually the optimization procedure constitutes a

“black boz” inside the overall system and, for simplicity, a conjugate-gradient optimizer

based on the alternating direction implicit method [13] (CGADIM) is used. Contrary

to the modified gradient method [14|, where the unknown fields and contrast are up-

dated simultaneously, but similarly to the contrast source inversion method [15], 123) =

{[7'((;)) (xn(r),yn(r))]k; g =1,.,Qu; r = 1,..,R = s ng :1,...,N(T)} and E,(j) =



{[Efogs) (xnm,ynm)]k; r=1,..,R=s;n4) =1,..,Ny); v=1,..,V} are iteratively (k
being the iteration number) reconstructed by alternatively updating the two sequences.
At each step of the multi-scaling procedure, the minimization algorithm is stopped when
a maximum number of iterations, K (i.e., k¥ < K), or a threshold on the cost func-
tion value, 0 (i.e., ®() {z,(:),ﬁf)} < §), or the value of the cost function remain unal-

tered in a fixed percentage of the total amount of minimization-algorithm iterations (i.e.,
onfar s} g foo (a0}

<, K, being an integer number).
o {5}

2.3 Termination Procedure

The multi-resolution procedure is iterated until a “stationary condition” for the iterative
procedure (s = 1,...5) is achieved (S = S, being the final step) in each of the () regions

defined by the clustering procedure. This condition holds when

e the number of regions identified by the clustering procure is stationary, then

i{lQw - Q)

S

} <1g (13)

e the qualitative-reconstruction parameters are stable, that is
m'l:nq:]_,..,Q(s) {n;E:S)}(q) < Nz

Ming=1,..,Q, {77(;)}((1) =

ugq) _ugq)
being {n(s)}(q) = e O] %100y, u=z,y, Land where n,, u = z,y, L, Q

u
u£s+1)

are fixed thresholds.
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3 Numerical Validation

In the following, the capabilities and current limitations of the IMM to localize, shape
and reconstruct multiple dielectric scatterers, are assessed by means of several numerical
simulations. The numerical validation is composed of two parts. Firstly, some tests with
synthetically-generated data (Subsection 3.1) are performed in order to evaluate different
noisy conditions as well as scatterer number and properties. Then, in Subsection 3.2, the
IMM is checked in correspondence with experimentally-acquired data.

Concerning the numerical examples, the investigation domain, Dy, consists of a square
with sides of length ¢, while the measurement domain, D,,, is a circle subdivided in
equally-spaced arcs whose mid-point serves as the location of a receiver. The data-
acquisition configuration is a multi-illumination-angle/multi-view system [17].

As far as the IMM is concerned, the following parametric configuration has been
heuristically (after an exhaustive set of numerical experiments) chosen: 7, =71, = 2%,
nr = 5%, ng = 0.5, and T, is equal to the value of the global minimum of the envelope of
the grey-level image histogram in the range (0.27,42, 0.871maz) (as an example, T, = 0.25
in Fig. 2(b)). On the other hand, the parameters values for the optimization algorithm
resulted: K = 2000, § = 10~%, K, = 100, and ¢ = 1072,

3.1 Testing against Synthetic-Data

In all the examples presented in this sub-section, the scatterering configuration is assumed
to be enclosed in an investigation domain £ = 4 A-sided (\ being the free-space wavelength)
and illuminated by a set of V' = 8 unit TM plane waves impinging at 6;,, = (v —1)7, v =
1,...,V. For each illumination, the scattered electric field data have been collected at
My =M,v=1,..V, (being M chosen according to the indications reported in [1] and
aimed at collecting all the available information of the scenario under test) sensors located

on the circular observation domain p?, = 2.94 ) in radius. Data values are numerically

computed by using the Richmond’s procedure [18] with a proper discretization (different

11



from that used at each step of the IMM) of the investigation domain in order to prevent
the “inverse crime” problem.

As a first experiment, aimed at highlighting the effectiveness of the IMM in locating
multiple objects without prior knowledge of the number, locations, or sizes in noiseless
as well in noisy conditions, the retrieval of a scattering object constituted by two lossless
homogeneous (7(,) (z,y) = 0.5, ¢ = 1, 2) cylinders, located at (z{) = 0.67 A, y{!) = 0.67 \),
(z?) = —0.67 ), y® = —0.67)), and L9 = 0.67 \ in side, is considered.

Figure 3 shows the dielectric distributions retrieved at different steps of the multi-
scaling process. The actual profile is also reported in Figure 3(a) and, in the recon-
structed profiles (Figs. 2(b)-(c)), the dashed line indicates the regions occupied by actual
structures. As can be observed, starting from the free-space configuration, the IMM se-
quentially identifies two regions in the investigation domain (Fig. 2(b)), and successively
refines the reconstruction of each object ending the process with the estimate of Fig.
2(c). The increase of the qualitative and quantitative imaging effectiveness during the
multi-step process is also confirmed by the values of the error figures reported in Tab. I

and computed according to the following expressions

(9 — \/[xﬁ‘gopt) B ng)r + [Z/ggopn - ygq)]Q

P by q= 17 e Q(Sopt) (15)
‘L(q) . q)‘
(Sopt)
AW@ — {ptLT x 100 g =1, ..., Q(5,p0) (16)
Re Re
(So t) — ref
+(Sop wn(r)ayn(r) T (a;"(r)’y"(r))
((i; Im [ ( )] Im [ ]
f = 2= 1 N(J) En('r)_ 100
re | (r) Re
(”) [ @ny )

R = Sopt
(17)
77¢/ being the actual object function and the index N((Tj)) can range over the whole investi-
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gation domain (j = tot), or over the area where the g-th actual object is located (j :>,(n)t)
or over the background belonging to the investigation domain (j = ext);
To evaluate the effect of the measurement noise on the reconstruction capabilities of

the method, the noise has been simulated by adding to the scattered data a complex

Gaussian random variable with zero mean value and a standard deviation given by

M 2
E: > (v)
v=1 m(v)— scatt (mm(v) ’ym(v))

X = 2MV(SNR)

(18)

SN R being the signal-to-noise ratio. Figure 4 shows the results achieved at the stopping
step of the IMM for different signal-to-noise-ratio values ranging from SNR = 20dB to
SNR = 5dB. As expected, the presence of the noise causes a deterioration of the re-
construction accuracy as confirmed from the error figures given in Tab. II. Intuitively,
it can be expected that as the signal power reduces, it will be increasingly difficult to
recover higher-order information about the target structure and an high resolution level.
Consequently, when the noise increase also a reconstruction-noise appears and for very
high noise level (SNR = 5dB) multiple, false structures can be observed near the right
objects. However, it should be pointed out that for SNR > 5dB the obtained recon-
structions appear satisfactory in term of location, shaping and also dielectric-distribution
estimation.

Then, in the the second experiment, we turn our attention to a more challenging
problem, in which the scattering objects present also a conductivity equal to o(g) (z,y) =
0.1[S/m], ¢ = 1,2. The geometric configuration is the same as in the previous example in
order to correctly evaluate the impact of the conductivity on the reconstruction accuracy.

As well as for the lossless case, the IMM is effective in detecting and locating multiple
objects (Fig. 5) and with the decrease of the signal-to-noise ratio also the reconstruc-
tion accuracy reduces producing larger errors inside the actual-scatterer regions (also in
comparison with those produced in the lossless case: 13.30 < [E(I)] o1 < 33.34 versus

wnt

856 < [¢h)] _  <9.90and 7.11 < [¢f)] <3330 versus 7.73 < [¢)] < 16.11)
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Tab. III. However, it should be pointed out that for high SN R values, even if the shape
of the two scatterers cannot be exactly identified, the algorithm converge to a structure
that occupies a large area of the actual one.

For completeness, Figure 6 gives the behavior of the multi-scaling cost function during
the optimization process for the noiseless case (presenting also the decrease in the state and
data terms) and for different noisy conditions. From Fig. 6(a), it can be observed that,

(1)

due to the free-space initialization, [<I> State = 0 and, at the first iterations, the cost

function is largely dependent from the data term, @%zta. With the increase of the iteration

Lc:O

number, for different steps (s = 1,2, 3) of the multi-scaling procedure, the optimization
algorithm proceeds into the minimization of the two terms whose amplitudes result almost
comparable. On the other hand, Fig. 6(b) clearly points out that the minimization results
more difficult in correspondence with an increase of the SNR value justifying the reduction
of the reconstruction accuracy shown in Fig. 5(¢) (and also in Fig. 4(c)) and confirmed
by numerical values in Tab. III.

A further assessment of the IMM is performed by considering the dielectric distribution
shown in Fig. 7(a) (7q) (z,y) = 0.5, 72) (z,y) = 1.0) and noisy data (SNR = 15dB).
In order to point out the advantages of the iterative multi-scaling strategy over standard
iterative approaches (which does not perform a multi-scaling/multi-resolution process
but directly process the inverse scattering data), the reconstruction has been carried out
by using also an iterative single-step approach (ISSM) based on the conjugate-gradient
alternating direction implicit method (i.e., the same optimizer used during the retrieval
procedure of the IMM). As far as the discretization of the investigation domain used by the
single-step approach is concerned, an homogeneous discretization with a cell-side equal to
the finer discretization step of the multi-scaling procedure is adopted. As far as the IMM
is concerned, the same level of performances as it can be seen in the previous example

results also here. On the contrary, the use of the ISSM leads to a reconstruction much

(1) (2)
worse in term of localization accuracy (p—’(%m = 4.76 and p—I(%SM = 2.70). Moreover, the
Prvm Prmm

poor estimate of the contrast function for the object on the left-bottom region of the

14



investigation domain (max(z,y)eDg) {T(%SM (z, y)} = 0.4 and W, e p® {T(IgSM (x,y)} =
0.24) and the presence of small artifacts in the region near the actual objects, produces
significant errors in the quantitative error figures (Tab. IV) as well as in estimating the

1

) (2)

: . . A AR

objects dimensions (—4£4 = 4.02 and —Z5£4 = 3.07).
AIMM AIMM

This example points out a typical feature of the IMM that is the capability of the
approach to zoom on the reconstructed image achieving a great accuracy in determin-
ing the correct value of the contrast function (being MAT(, e p) {7(111)‘“/1 (z, y)} = 0.65,
W, e p® {T(IIJ;/[M (z, y)} = 0.49 and MAT (e p {T(IQ])VIM (:r,y)} =11, a0, po {T(IQ];JM (z, y)} =
1.01).

In the last synthetic example, aimed at evaluating the dependence of the reconstruction
on the number of objects inside the investigation domain, three lossless square cylinders
(g (z,y) = 0.5, ¢ = 1,2, 3) centered at ((z{)) = 0.67, yV = 0.67 ), ({2 = —0.67 ],
y?) = 0.67)\), and (z& = 0.0, y{!) = —0.67))) and L@ = 0.67 A\-sided are considered
(Fig. 8 (a)). In correspondence of a noisy environment, characterized by a SNR = 15dB,
the IMM is able to achieve the reconstructed distribution shown in Fig. 8(b). It can
be noted that the approach keeps its effectiveness in discrimining and locating different
objects (as confirmed by the values of the localization error: p) = 0.012, p® = 0.023,
and p? = 0.013). Also the estimated contrast value results very close to the expected
one as well as the homogeneous behavior of the contrast function (fg% = 5.45, 552,)5 = 4.57,

and £) = 5.95).

3.2 Testing against Real-Data

Finally, the last experiment is concerned with the reconstruction of a multiple-scatterers
configuration starting from real-scattered data belonging to the “Marseille” dataset [16].
In particular, the considered data (“dielTM_ 8f.exp“) are related to two filled dielectric
cylinders characterized by a relative permittivity equal to e,(z,y) = 3.0 £ 0.3, (z,y) €
ng), g = 1,2 (corresponding to an object function 7 (z,y) = 2.0 £0.3, ¢ = 1,2) with

circular cross-sections ¢ = 15 mm in radius and placed about 30 mm from the center of the

15



experimental setup (d = 90 mm being the distance between the centers of the cylinders).
A detailed description of the underlying experimental setup as well as the data sets is
given in the introduction of [16] (pp. 1565-1572) by Belkebir and Saillard.

In order to perform the reconstruction, the IMM has been applied to monochromatic
datasets at f =4GHz (§ = 0.2, % = 1.2) and the investigation domain has been chosen

to be a squared area of 30 x 30 cm? (£ = 4.0). Due to the aspect-limited nature of the

I4
p)
scattered data (the measures are not acquired in an angular sector of 60°), the information
available from the scattered data results strongly reduced. Consequently, the complete
data-set (V' = 36 and M = 49) is processed by the IMM.

As far as the multi-illumination /multi-view system of the experimental setup is con-
cerned, the fields are generated and received by double-ridged horn antennas. Since the
data equation (2) is based on the knowledge of the incident fields and the design of the
set-up does not provide such information (but only the field in absence of the target as
measured on the observation domain), transmitting antennas have been approximated by
line sources parallel to the cylindrical scatterers.

Figure 9 shows a typical evolution of the reconstructed profile during the multi-step
procedure and the corresponding behavior of the cost function as a function of the num-
ber of iterations (Fig. 9(d)). Starting from a free-space dielectric profile and field dis-
tribution, Fig. 9(a) shows the object-function distribution retrieved at s = 1. As can
be observed, some artifacts are present in the investigation domain and neither an ac-
curate qualitative nor quantitative imaging of the actual objects is achieved. Conse-
quently, the clustering procedure identifies only one region (Q() = 1, s = 1) located
at a:gl)) = 0.102 ), yg(ll)) = 7 x 1073 ), LEB = 1.617 X in side, where “a scatterer” is
present. At the end of second step (s = 2), the algorithm achieves the splitting step

where the clustering procedure is able to define two smaller regions (Q) = 2) where

) =0.172), y{l) =0.589 )

two not-connected objects are located at the positions (x( 5 co

1
«

1 . _ 2 .
(LEZg = 0.498 \-sided) and (ngz?) =3 x 1072 ), y§(22)) = —0.634 )\) (L§2§ = 0.517 \-sided),

respectively. The two cylinders appear correctly localized, slightly overestimated and
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fairly well retrieved (Fig. 9(b)). The optimal dielectric profile, 7(rt) S, = 3, is
then given in Figure 9(c¢). The resolution accuracy further improves in term of local-
ization ((z{l) = 0116, y{) = 0.604), L} = 0436)), (=) = —0.018), y) =
—0.614 ), ng = 0.437 )\)) as well as as quantitative estimation of the dielectric distri-
bution (being MAL e pd) {T((IS)opt) (x,y)} — 29 O {T((IS)opt) (x,y)} — 909 and
MAT(, e p® {T((;)"”t) (x,y)} = 2.1, W, Hep® {T((Qs)c'pt) (x,y)} = 2.04). For comparison
purposes, Figure 10 shows the image of the dielectric profile reconstructed by means of
the ISSM with the same resolution level achieved by the multi-scaling procedure. The
retrieved profile presents some artifacts (producing an overestimation of the dimensions
of the scatterers (Lgls)s v = 0.777 A, L%)s a = 0.626 \) as well as an incorrect localization
(z,, = —0.014 )y =0.770)) and (z2) = 0.033), y{) = —0.774 X)) and
the homogeneity of the two objects is lost. Moreover, inside the regions where the actual
objects are located, the value of the contrast is far from the expected one with maximum

value (max(m,y)EDg) {T(ISSM (z, y)} = 1.67, max T(IQ%’SM (z, y)} = 1.58).

(2) {
(E,y)EDO

4 Conclusions and Future Developments

The retrieval of cross-sectional distribution of multiple cylindrical objects located in free
space has been performed via the iterative multi-scaling method. Theoretical and algo-
rithmic details on the solution method for multiple scatterers imaging have been presented
and validated by means of numerical experiments. Selected examples, dealing with noisy-
synthetic data as well as experimentally-acquired measures, have been presented assessing
the effectiveness but also current limitations of the proposed procedure.

As far as the current limitations of the IMM are concerned, certainly they are due to

two main reasons:

e the use of a “black box” optimization algorithm which in principle, without an
accurate analysis of the cost function or a lot of a-priori knowledge of the problem,

could be trapped in local minima corresponding to wrong reconstruction of the
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dielectric profile;

e the use of a simple clustering procedure in order to estimate the number of scatterers

belonging to the investigation domain.

In order to overcome these drawbacks some possible solutions (subject of future researches)
could be a minimization performed by means of a global optimization procedure able to
avoid local minima in the solution-space sampling procedure and computationally effective
also in a serial implementation in correspondence with a low dimension search-space (as
that considered at each step of the IMM). On the other hand, more sophisticated clustering
methodologies (see [19] and the references therein for a general overview) also based on
electromagnetic criteria would greatly improve the reconstruction accuracy of the IMM
increasing the convergence rate of the minimization algorithm and avoiding some artifacts
occurring especially in high-noise environments. Moreover, further refinements could be
achieved with the use of region-based approaches such as region growing by split-and-
merge techniques broadly used in image processing and currently under study for an

application in microwave imaging applications.
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Figure Caption
e Figure 1. Problem Geometry.

e Figure 2. An example of the Clustering Procedure. (a) Grey-level representation
of reconstructed dielectric profile at s-th step, (b) binarized representation of the
reconstructed dielectric profile after thresholding, Tun(Tn,,, Yn,,), (c) histogram of
the reconstructed dielectric profile, (d) representation of the reconstructed dielectric
profile after filtering, Tan(%n,,,Yn,,,), and (e) neighborhood of pixel (zy,,,¥xs,,,) in

the pixel-labeling process.

e Figure 3. Iterative Process - Estimated permittivity distributions of two square
homogeneous dielectric cylinders (71y = 72y = 0.5) (Noiseless conditions). (a)

Reference configuration. (b) s =1, and (¢) s = Sopt = 2.

e Figure 4. Estimated permittivity distributions of two square homogeneous dielectric
cylinders (7(1) = 7(2) = 0.5). Retrieved profile at S = S,,; when: (a) SNR = 20dB,
(b)) SNR=10dB, and (¢) SNR =5dB.

e Figure 5. Reconstruction of two square dissipative homogeneous cylinders (7(;) =
T(2) = 0.5—70.45) (a). Retrieved profile at S = S,,; when: (b) Noiseless conditions,

(c) SNR=20dB, (d) SNR=10dB, and (e¢) SNR =5dB.

e Figure 6. Iterative Process - Reconstruction of two square dissipative homogeneous
cylinders (7(1) = 7(2) = 0.5 —j0.45). Behavior of the Multi-Scaling Cost function for

(a) noiseless and (b) noisy conditions.

e Figure 7. Reconstruction of two square homogeneous cylinders, characterized by
different object functions (7(;) = 0.5, 7(2) = 1.0) (a). Dielectric profile estimated by
using (b) the IMM and (c) the ISSM for a SNR = 15dB.

e Figure 8. Reconstruction of three square homogeneous cylinders (7(1) = 7(2) = 7(3) =

0.5). (a) Actual distribution and (b) retrieved profile in correspondence with noisy
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(SNR = 15dB) data.

e Figure 9. Iterative Process - Reconstruction of two square homogeneous cylinders
(Real dataset “Marseille” [16] - “twodielTM _8f.exp”): (a) s = 1, (b) s = 2, and
(¢) s = Sopt = 3 (dashed line: actual profile). Behavior of the Multi-Scaling cost

function (d).

e Figure 10. Reconstruction of two square homogeneous cylinders (Real dataset “Mar-

seille” [16] - “twodiel TM _ 8f.exp”). Retrieved profile with the ISSM.
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Table Caption

e Table I. Two Lossless Dielectric Square Cylinders (Noiseless Conditions - Iterative

Process) - Error Figures.

e Table II. Two Lossless Dielectric Square Cylinders (Noisy Conditions) - Error Fig-

ures.

e Table ITI. Two Dissipative Dielectric Square Cylinders (Noiseless and Noisy Condi-

tions) - Quantitative (a) and Qualitative (b) Error Figures.

e Table IV. Two Lossless Dielectric Square Cylinders characterized by different object
function (SNR = 15dB) - Comparison between the IMM and the CGADIM in term

of Error Figures.
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Fig. 1 - S. Caorsi et al., “Detection and Imaging ...”
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Fig. 2(II) - S. Caorsi et al., “Detection and Imaging ...”
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Fig. 3 - S. Caorsi et al., “Detection and Imaging ...”
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Fig. 4 - S. Caorsi et al., “Detection and Imaging ...
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Fig. 5 (I) - S. Caorsi et al., “Detection and Imaging ...”
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Fig. 5 (II) - S. Caorsi et al., “Detection and Imaging ...”
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Fig. 5 (III) - S. Caorsi et al., “Detection and Imaging ...”
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Fig. 6 - S. Caorsi et al., “Detection and Imaging ...”
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Fig. 7 - S. Caorsi et al., “Detection and Imaging ...”
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Fig. 8 - S. Caorsi et al., “Detection and Imaging ...’
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Fig. 9 - S. Caorsi et al., “Detection and Imaging ...”
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Fig. 10 - S. Caorsi et al., “Detection and Imaging ...”
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Step No. 1 2
Etot 6.4 2.05
¢t) 14.6 9.69
¢?) 15.0 7.73
Eeut 6.25 2.02
p) 0.037 0.031
p?) 0.054 0.034
AW 25.12 12.78
A 22.12 11.08

Tab. I - S. Caorsi et al., “Detection and Imaging ...”
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SNR |[dB]| oo 20 10 5
Eot 2.05 3.28 3.61 4.34
el 856 | 884 | 9.69 | 9.90
£ 773 | 952 | 1031 | 16.11
Eeut 2.02 2.61 3.25 3.81
ptl 0.031 | 0.072 | 0.083 | 0.21
p?) 0.034 | 0.068 | 0.098 | 0.26
AW 12.78 | 16.20 | 24.87 | 25.12
AR) 11.08 | 17.11 | 21.94 | 29.88

Tab. IT - S. Caorsi et al., “Detection and Imaging ...”
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SNR [dB|| oo 20 10 5
p) 0.037 | 0.036 | 0.084 | 0.22
p?) 0.033 | 0.038 | 0.063 | 0.10
AW 21.55 | 30.62 | 3529 | 57.17
A®) 23.41 | 26.01 | 32.14 | 78.18

Tab. ITI(2) - S. Caorsi et al., “Detection and Imaging ...”
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IMM ISSM
Eiot 1.89 2.76
¢th) 17.09 21.60
¢?) 13.29 24.12
Eeat 1.03 1.83
p) 0.050 0.238
ot 0.048 0.130
AW 6.22 25.06
AL) 7.41 22.78

Tab. IV - S. Caorsi et al., “Detection and Imaging ...”
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