512 research outputs found

    Conical diffraction and the dispersion surface of hyperbolic metamaterials

    Full text link
    Hyperbolic metamaterials are materials in which at least one principal dielectric constant is negative. We describe the refractive index surface, and the resulting refraction effects, for a biaxial hyperbolic metamaterial, with principal dielectric constants ϵ1<0\epsilon_1<0, 0<ϵ2ϵ30<\epsilon_2\neq\epsilon_3. In this general case the two sheets of the index surface intersect forming conical singularities. We derive the ray description of conical refraction in these materials, and show that it is topologically and quantitatively distinct from conical refraction in a conventional biaxial material. We also develop a wave optics description, which allows us to obtain the diffraction patterns formed from arbitrary beams incident close to the optic axis. The resulting patterns lack circular symmetry, and hence are qualitatively different from those obtained in conventional, positive index materials.Comment: 10 pages, 7 figure

    Heralded Two-Photon Entanglement from Probabilistic Quantum Logic Operations on Multiple Parametric Down-Conversion Sources

    Get PDF
    An ideal controlled-NOT gate followed by projective measurements can be used to identify specific Bell states of its two input qubits. When the input qubits are each members of independent Bell states, these projective measurements can be used to swap the post-selected entanglement onto the remaining two qubits. Here we apply this strategy to produce heralded two-photon polarization entanglement using Bell states that originate from independent parametric down-conversion sources, and a particular probabilistic controlled-NOT gate that is constructed from linear optical elements. The resulting implementation is closely related to an earlier proposal by Sliwa and Banaszek [quant-ph/0207117], and can be intuitively understood in terms of familiar quantum information protocols. The possibility of producing a ``pseudo-demand'' source of two-photon entanglement by storing and releasing these heralded pairs from independent cyclical quantum memory devices is also discussed.Comment: 5 pages, 4 figures; submitted to IEEE Journal of Selected Topics in Quantum Electronics, special issue on "Quantum Internet Technologies

    Two-photon-induced photoconductivity enhancement in semiconductor microcavities: a theoretical investigation

    Get PDF
    We describe a detailed theoretical investigation of two-photon absorption photoconductivity in semiconductor microcavities. We show that high enhancement (by a factor of >10, 000) of the nonlinear response can be obtained as a result of the microcavity effect. We discuss in detail the design and performance (dynamic range, speed) of such a device with the help of the example of an AlGaAs/GaAs microcavity operating at 900 nm. This device shows promise for low-intensity, fast autocorrelation and demultiplexing applications

    High-speed chromatic dispersion monitoring of a two-channel WDM system using a single TPA microcavity

    Get PDF
    Chromatic dispersion monitoring of two 160 Gb/s wavelength channels using a TPA Microcavity is presented. As the microcavity exhibits a wavelength resonance characteristic, a single device could monitor a number of different WDM-channels sequentially

    Rhythm and Vowel Quality in Accents of English

    Get PDF
    In a sample of 27 speakers of Scottish Standard English two notoriously variable consonantal features are investigated: the contrast of /m/ and /w/ and non-prevocalic /r/, the latter both in terms of its presence or absence and the phonetic form it takes, if present. The pattern of realisation of non-prevocalic /r/ largely confirms previously reported findings. But there are a number of surprising results regarding the merger of /m/ and /w/ and the loss of non-prevocalic /r/: While the former is more likely to happen in younger speakers and females, the latter seems more likely in older speakers and males. This is suggestive of change in progress leading to a loss of the /m/ - /w/ contrast, while the variation found in non-prevocalic /r/ follows an almost inverse sociolinguistic pattern that does not suggest any such change and is additionally largely explicable in language-internal terms. One phenomenon requiring further investigation is the curious effect direct contact with Southern English accents seems to have on non-prevocalic /r/: innovation on the structural level (i.e. loss) and conservatism on the realisational level (i.e. increased incidence of [r] and [r]) appear to be conditioned by the same sociolinguistic factors

    Wavelength tuneable pulse monitoring using a Two-Photon-Absorption microcavity

    Get PDF
    Two Photon Absorption (TPA) is a non-linear optical-to-electrical conversion process that can be significantly enhanced by placing the active region within a resonance microcavity. The experiment confirmed the potential use of the microcavity structure for monitoring a single channel in multi-wavelength systems. The cavity can be designed for different applications depending on desired resonance width or cavity life time allowing the contrast ratio to be further improved. Due to the possibility of tuning the resonance wavelength by cavity tilting, a single device can be used to monitor a number of WDM channels without the need for additional optical filters

    Resonance tuning of two-photon absorption microcavities for wavelength-selective pulse monitoring

    Get PDF
    We show the potential use of a single photodetector for multichannel pulse monitoring. Two-photon absorption in a microcavity structure is used as the nonlinear optical technique for pulse monitoring. Angle tuning of the device allows the resonance to be tuned. For the device studied here that is optimized for 2-ps pulses, a possible tuning range of 55 nm is shown

    Optical signal processing via two-photon absorption in a semiconductor microcavity for the next generation of high-speed optical communications network

    Get PDF
    Due to the introduction of new broadband services, individual line data rates are expected to exceed 100 Gb/s in the near future. To operate at these high speeds, new optical signal processing techniques will have to be developed. This paper will demonstrate that two-photon absorption in a specially designed semiconductor microcavity is an ideal candidate for optical signal processing applications such as autocorrelation, sampling, and demultiplexing in high-speed wavelength-division-multiplexed (WDM) and hybrid WDM/optical time-division-multiplexed networks

    Chromatic dispersion monitoring for high-speed WDM systems using two-photon absorption in a semiconductor microcavity

    Get PDF
    This paper presents a theoretical and experimental investigation into the use of a two-photon absorption (TPA) photodetector for use in chromatic dispersion (CD) monitoring in high-speed, WDM network. In order to overcome the inefficiency associated with the nonlinear optical-to-electrical TPA process, a microcavity structure is employed. An interesting feature of such a solution is the fact that the microcavity enhances only a narrow wavelength range determined by device design and angle at which the signal enters the device. Thus, a single device can be used to monitor a number of different wavelength channels without the need for additional external filters. When using a nonlinear photodetector, the photocurrent generated for Gaussian pulses is inversely related to the pulsewidth. However, when using a microcavity structure, the cavity bandwidth also needs to be considered, as does the shape of the optical pulses incident on the device. Simulation results are presented for a variety of cavity bandwidths, pulse shapes and durations, and spacing between adjacent wavelength channels. These results are verified experimental using a microcavity with a bandwidth of 260 GHz (2.1 nm) at normal incident angle, with the incident signal comprising of two wavelength channels separated by 1.25 THz (10 nm), each operating at an aggregate data rate of 160 Gb/s. The results demonstrate the applicability of the presented technique to monitor accumulated dispersion fluctuations in a range of 3 ps/nm for 160 Gb/s RZ data channel

    All-optical pulse processing for advanced photonic communication system

    Get PDF
    This paper investigates the use of a two-photon absorption photodetector for high speed processing of ultrashort optical pulses in advanced photonic communication systems. Specifically the paper describes how the two-photon absorption photodetector maybe employed for chromatic dispersion monitoring in high-speed, wavelength division multiplexed networks, and also for reducing multiple access interference noise in an optical code division multiplexed system
    corecore