1,481 research outputs found

    Ethics of modifying the mitochondrial genome

    Get PDF
    Recent preclinical studies have shown the feasibility of specific variants of nuclear transfer to prevent mitochondrial DNA disorders. Nuclear transfer could be a valuable reproductive option for carriers of mitochondrial mutations. A clinical application of nuclear transfer, however, would entail germ-line modification, more specifically a germ-line modification of the mitochondrial genome. One of the most prominent objections against germ-line modification is the fear that it would become possible to alter 'essential characteristics' of a future person, thereby possibly violating the child's right to an open future. As only the nuclear DNA would contain the ingredients for individual characteristics, modification of the mtDNA is often considered less controversial than modification of the nuclear DNA. This paper discusses the tenability of this dichotomy. After having clarified the concept of germ-line modification, it argues that modification of the mtDNA is not substantively different from modification of the nuclear DNA in terms of its effects on the identity of the future person. Subsequently the paper assesses how this conclusion affects the moral evaluation of nuclear transfer to prevent mtDNA disorders. It concludes that the moral acceptability of germ-line modification does not depend on whether it alters the identity of the future child-all germ-line modifications do-but on whether it safeguards the child's right to an open future. If nuclear transfer to prevent mtDNA disorders becomes safe and effective, then dismissing it because it involves germ-line modification is unjustified

    WHO should accelerate, not stall, rectal artesunate deployment for pre-referral treatment of severe malaria

    Get PDF
    The recent World Health Organization moratorium on rectal artesunate (RAS) for pre-referral treatment of severe childhood malaria is costing young lives. The decision was based on disappointing findings from a large observational study that provided RAS to community health workers with little training and supervision. This non-randomized, operational research has provided useful information to guide the implementation of RAS but is subject to bias and confounding and cannot be used to assess treatment effects. Parenteral artesunate reduces severe malaria mortality and a large body of evidence also shows RAS has lifesaving efficacy. There is now more than a decade of delay in conducting the necessary engagement and training required for successful deployment of RAS. Further delays will result in more preventable deaths

    Brain Swelling and Mannitol Therapy in Adult Cerebral Malaria: A Randomized Trial

    Get PDF
    Mild cerebral swelling on CT-scan was common in adult patients with cerebral malaria, but severity of swelling was not correlated with coma depth or survival. Mannitol as adjunctive treatment for cerebral malaria prolonged coma duration and may be harmful

    An artesunate pharmacometric model to explain therapeutic responses in falciparum malaria.

    Get PDF
    Background: The artemisinins are potent and widely used antimalarial drugs that are eliminated rapidly. A simple concentration–effect pharmacometric model does not explain why dosing more frequently than once daily fails to augment parasite clearance and improve therapeutic responses in vivo. Artemisinins can induce a temporary non-replicative or ‘dormant’ drug refractory state in Plasmodium falciparum malaria parasites which may explain recrudescences observed in clinical trials despite full drug susceptibility, but whether it explains the dosing–response relationship is uncertain. Objectives: To propose a revised model of antimalarial pharmacodynamics that incorporates reversible asexual parasite injury and temporary drug refractoriness in order to explain the failure of frequent dosing to augment therapeutic efficacy in falciparum malaria. Methods: The model was fitted using a Bayesian Markov Chain Monte Carlo approach with the parasite clearance data from 39 patients with uncomplicated falciparum malaria treated with artesunate from western Cambodia and 40 patients from northwestern Thailand reported previously. Results: The revised model captured the dynamics of parasite clearance data. Its predictions are consistent with observed therapeutic responses. Conclusions: A within-host pharmacometric model is proposed in which it is hypothesized that some malaria parasites enter a temporary drug refractory state after exposure to artemisinin antimalarials, which is followed by delayed parasite death or reactivation. The model fitted the observed sequential parasite density data from patients with acute P. falciparum malaria, and it supported reduced ring stage activity in artemisinin-resistant infections

    Forensic investigation of falsified antimalarials using isotope ratio mass spectrometry: a pilot investigation

    Get PDF
    We explored whether isotope ratio mass spectrometry (IRMS) is useful to investigate the origin of falsified antimalarials. Forty-four falsified and genuine antimalarial samples (artesunate, artemether-lumefantrine, dihydroartemisinin-piperaquine and sulphamethopyrazine-pyrimethamine) were analyzed in bulk for carbon (C), nitrogen (N), and oxygen (O) element concentrations and stable isotope ratios. The insoluble fraction (“starch”) was extracted from 26 samples and analyzed. Samples of known geographical origin maize, a common source of excipient starch, were used to produce a comparison dataset to predict starch source. In both an initial (n = 18) and a follow-on set of samples that contained/claimed to contain artesunate/artemether (n = 26), falsified antimalarials had a range of C concentrations less than genuine comparator antimalarials and δ13C values higher than genuine comparators. The δ13C values of falsified antimalarials suggested that C4 plant-based organic material (e.g., starch derived from maize) had been included. Using the known-origin maize samples, predictions for growth water δ18O values for the extracted “starch” ranged from − 6.10 to − 1.62‰. These findings suggest that IRMS may be a useful tool for profiling falsified antimalarials. We found that C4 ingredients were exclusively used in falsified antimalarials versus genuine antimalarials, and that it may be possible to predict potential growth water δ18O values for the starch present in falsified antimalarials

    Spatio-temporal spread of artemisinin resistance in Southeast Asia

    Get PDF
    Current malaria elimination targets must withstand a colossal challenge–resistance to the current gold standard antimalarial drug, namely artemisinin derivatives. If artemisinin resistance significantly expands to Africa or India, cases and malaria-related deaths are set to increase substantially. Spatial information on the changing levels of artemisinin resistance in Southeast Asia is therefore critical for health organisations to prioritise malaria control measures, but available data on artemisinin resistance are sparse. We use a comprehensive database from the WorldWide Antimalarial Resistance Network on the prevalence of non-synonymous mutations in the Kelch 13 (K13) gene, which are known to be associated with artemisinin resistance, and a Bayesian geostatistical model to produce spatio-temporal predictions of artemisinin resistance. Our maps of estimated prevalence show an expansion of the K13 mutation across the Greater Mekong Subregion from 2000 to 2022. Moreover, the period between 2010 and 2015 demonstrated the most spatial change across the region. Our model and maps provide important insights into the spatial and temporal trends of artemisinin resistance in a way that is not possible using data alone, thereby enabling improved spatial decision support systems on an unprecedented fine-scale spatial resolution. By predicting for the first time spatio-temporal patterns and extents of artemisinin resistance at the subcontinent level, this study provides critical information for supporting malaria elimination goals in Southeast Asia

    Population pharmacokinetic and pharmacodynamic properties of intramuscular quinine in Tanzanian children with severe Falciparum malaria.

    No full text
    Although artesunate is clearly superior, parenteral quinine is still used widely for the treatment of severe malaria. A loading-dose regimen has been recommended for 30 years but is still often not used. A population pharmacokinetic study was conducted with 75 Tanzanian children aged 4 months to 8 years with severe malaria who received quinine intramuscularly; 69 patients received a loading dose of 20 mg quinine dihydrochloride (salt)/kg of body weight. Twenty-one patients had plasma quinine concentrations detectable at baseline. A zero-order absorption model with one-compartment disposition pharmacokinetics described the data adequately. Body weight was the only significant covariate and was implemented as an allometric function on clearance and volume parameters. Population pharmacokinetic parameter estimates (and percent relative standard errors [%RSE]) of elimination clearance, central volume of distribution, and duration of zero-order absorption were 0.977 liters/h (6.50%), 16.7 liters (6.39%), and 1.42 h (21.5%), respectively, for a typical patient weighing 11 kg. Quinine exposure was reduced at lower body weights after standard weight-based dosing; there was 18% less exposure over 24 h in patients weighing 5 kg than in those weighing 25 kg. Maximum plasma concentrations after the loading dose were unaffected by body weight. There was no evidence of dose-related drug toxicity with the loading dosing regimen. Intramuscular quinine is rapidly and reliably absorbed in children with severe falciparum malaria. Based on these pharmacokinetic data, a loading dose of 20 mg salt/kg is recommended, provided that no loading dose was administered within 24 h and no routine dose was administered within 12 h of admission. (This study has been registered with Current Controlled Trials under registration number ISRCTN 50258054.)

    Prognostic indicators in adults hospitalized with falciparum malaria in Western Thailand.

    Get PDF
    Background: Severe malaria remains a major cause of death and morbidity amongst adults in the Asiatic tropics. Methods: A retrospective analysis of the clinical and laboratory data of 988 adult patients, hospitalized with Plasmodium falciparum malaria and prospectively recruited to malaria studies in western Thailand between 1986 and 2002, was performed to assess the factors associated with a fatal outcome. Different severity scores and classifications for defining severe malaria were compared and, using multiple logistic regression, simple models for predicting mortality developed. Results: The proportion of patients fulfilling the WHO 2000 definition of severe malaria was 78.1%, and their mortality was 10%. Mortality in patients given parenteral artesunate or artemether (16/317, 5%) was lower than in those given parenteral quinine (59/442, 13%) (P < 0.001). Models using parameter sets based on WHO 1990, 2000 and Adapted AQ criteria plus blood smear parasite-stage assessment gave the best mortality prediction. A malaria prognostic index (MPI), derived from the dataset using five clinical or laboratory variables gave similar prognostic accuracy. Conclusions: The mortality of severe malaria in adults has fallen and the switch from quinine to artesunate has probably been an important contributor. Prognostic indices based on WHO 2000 definitions, and other simpler indices based on fewer variables, provide clinically useful predictions of outcome in Asian adults with severe malaria

    A Retrospective Analysis of the Haemodynamic and Metabolic Effects of Fluid Resuscitation in Vietnamese Adults with Severe Falciparum Malaria

    Get PDF
    BACKGROUND: Optimising the fluid resuscitation of patients with severe malaria is a simple and potentially cost-effective intervention. Current WHO guidelines recommend central venous pressure (CVP) guided, crystalloid based, resuscitation in adults. METHODS: Prospectively collected haemodynamic data from intervention trials in Vietnamese adults with severe malaria were analysed retrospectively to assess the responses to fluid resuscitation. RESULTS: 43 patients were studied of whom 24 received a fluid load. The fluid load resulted in an increase in cardiac index (mean increase: 0.75 L/min/m(2) (95% Confidence interval (CI): 0.41 to 1.1)), but no significant change in acid-base status post resuscitation (mean increase base deficit 0.6 mmol/L (95% CI: -0.1 to 1.3). The CVP and PAoP (pulmonary artery occlusion pressure) were highly inter-correlated (r(s) = 0.7, p<0.0001), but neither were correlated with acid-base status (arterial pH, serum bicarbonate, base deficit) or respiratory status (PaO(2)/FiO(2) ratio). There was no correlation between the oxygen delivery (DO(2)) and base deficit at the 63 time-points where they were assessed simultaneously (r(s) = -0.09, p = 0.46). CONCLUSIONS: In adults with severe falciparum malaria there was no observed improvement in patient outcomes or acid-base status with fluid loading. Neither CVP nor PAoP correlated with markers of end-organ perfusion or respiratory status, suggesting these measures are poor predictors of their fluid resuscitation needs
    corecore