1,316 research outputs found
Venus - Preliminary science objectives and experiments for use in advanced mission studies
Mission planning and experiment design for future Mariner-type Venus space probe
Genetic Studies of Sulfadiazine-resistant and Methionine-requiring \u3cem\u3eNeisseria\u3c/em\u3e Isolated From Clinical Material
Deoxyribonucleate (DNA) preparations were extracted from Neisseria meningitidis (four isolates from spinal fluid and blood) and N. gonorrhoeae strains, all of which were resistant to sulfadiazine upon primary isolation. These DNA preparations, together with others from in vitro mutants of N. meningitidis and N. perflava, were examined in transformation tests by using as recipient a drug-susceptible strain of N. meningitidis (Ne 15 Sul-s Met+) which was able to grow in a methionine-free defined medium. The sulfadiazine resistance typical of each donor was introduced into the uniform constitution of this recipient. Production of p-aminobenzoic acid was not significantly altered thereby. Transformants elicited by DNA from the N. meningitidis clinical isolates were resistant to at least 200 μg of sulfadiazine/ml, and did not show a requirement for methionine (Sul-r Met+). DNA from six strains of N. gonorrhoeae, which were isolated during the period of therapeutic use of sulfonamides, conveyed lower degrees of resistance and, invariably, a concurrent methionine requirement (Sul-r/Met−). The requirement of these transformants, and that of in vitro mutants selected on sulfadiazine-agar, was satisfied by methionine, but not by vitamin B12, homocysteine, cystathionine, homoserine, or cysteine. Sul-r Met+ and Sul-r/Met− loci could coexist in the same genome, but were segregated during transformation. On the other hand, the dual Sul-r/Met− properties were not separated by recombination, but were eliminated together. DNA from various Sul-r/Met− clones tested against recipients having nonidentical Sul-r/Met− mutant sites yielded Sul-s Met+ transformants. The met locus involved is genetically complex, and will be a valuable tool for studies of genetic fine structure of members of Neisseria, and of genetic homology between species
Investigation of the Domain Wall Fermion Approach to Chiral Gauge Theories on the Lattice
We investigate a recent proposal to construct chiral gauge theories on the
lattice using domain wall fermions. We restrict ourselves to the finite volume
case, in which two domain walls are present, with modes of opposite chirality
on each of them. We couple the chiral fermions on only one of the domain walls
to a gauge field. In order to preserve gauge invariance, we have to add a
scalar field, which gives rise to additional light mirror fermion and scalar
modes. We argue that in an anomaly free model these extra modes would decouple
if our model possesses a so-called strong coupling symmetric phase. However,
our numerical results indicate that such a phase most probably does not exist.
---- Note: 9 Postscript figures are appended as uuencoded compressed tar file.Comment: 27p. Latex; UCSD/PTH 93-28, Wash. U. HEP/93-6
A YAC contig in Xp21 containing the adrenal hypoplasia congenita and glycerol kinase deficiency genes
The gene loci for adrenal hypoplasia congenita (AHC) and glycerol kinase deficiency (GK) map in Xp21 distal to Duchenne muscular dystrophy (DMD), and proximal to DXS28 (C7), by analysis of patient deletions. We have constructed a yeast artificial chromosome (YAC) contig encompassing a 1.2 Mb region extending distally from DMD, and containing DXS708 (JC-1), the distal junction clone of a patient with GK and DMD. A pulsed-field gel electrophoresis map of the YAC contig identified 3 potential CpG islands. Whole YAC hybridization identified cosmids both for construction of cosmid contigs, and isolation of single copy probes. Thirteen new single copy probes and DXS28 and DXS708 were hybridized on a panel of patients; the deletion mapping indicates that the YAC contig contains both GK and at least part of AHC, and together with the physical map defines a GK critical region of 50-250 kb. In one AHC patient with a cytogenetically detectable deletion we used the new probes to characterize a complex double deletion. Non-overlapping deletions observed in other unrelated AHC patients indicate that the AHC gene is large, extending over at least 200-500 kb. This mapping provides the basis for the identification of the AHC and GK gene
Status of Muon Collider Research and Development and Future Plans
The status of the research on muon colliders is discussed and plans are
outlined for future theoretical and experimental studies. Besides continued
work on the parameters of a 3-4 and 0.5 TeV center-of-mass (CoM) energy
collider, many studies are now concentrating on a machine near 0.1 TeV (CoM)
that could be a factory for the s-channel production of Higgs particles. We
discuss the research on the various components in such muon colliders, starting
from the proton accelerator needed to generate pions from a heavy-Z target and
proceeding through the phase rotation and decay ()
channel, muon cooling, acceleration, storage in a collider ring and the
collider detector. We also present theoretical and experimental R & D plans for
the next several years that should lead to a better understanding of the design
and feasibility issues for all of the components. This report is an update of
the progress on the R & D since the Feasibility Study of Muon Colliders
presented at the Snowmass'96 Workshop [R. B. Palmer, A. Sessler and A.
Tollestrup, Proceedings of the 1996 DPF/DPB Summer Study on High-Energy Physics
(Stanford Linear Accelerator Center, Menlo Park, CA, 1997)].Comment: 95 pages, 75 figures. Submitted to Physical Review Special Topics,
Accelerators and Beam
Toward a molecular pathogenic pathway for Yersinia pestis YopM
YopM is one of the six “effector Yops” of the human-pathogenic Yersinia, but its mechanism has not been defined. After delivery to J774A.1 monocyte-like cells, YopM can rapidly bind and activate the serine/threonine kinases RSK1 and PRK2. However, in infected mice, effects of Y. pestis YopM have been seen only after 24–48 h post-infection (p.i.). To identify potential direct effects of YopM in-vivo we tested for effects of YopM at 1 h and 16–18 h p.i. in mice infected systemically with 106 bacteria. At 16 h p.i., there was a robust host response to both parent and ΔyopM-1 Y. pestis KIM5. Compared to cells from non-infected mice, CD11b+ cells from spleens of infected mice produced more than 100-fold greater IFNγ. In the corresponding sera there were more than 100-fold greater amounts of IFNγ, G-CSF, and CXCL9, as well as more than 10-fold greater amounts of IL-6, CXCL10, and CXCL1. The only YopM-related differences were slightly lower CXCL10 and IL-6 in sera from mice infected 16 h with parent compared to ΔyopM-1 Y. pestis. Microarray analysis of the CD11b+ cells did not identify consistent transcriptional differences of ≥4-fold at 18 h p.i. However, at 1 h p.i. mRNA for early growth response transcription factor 1 (Egr1) was decreased when YopM was present. Bone marrow-derived macrophages infected for 1 h also expressed lower Egr1 message when YopM was present. Infected J774A.1 cells showed greater expression of Egr1 at 1 h p.i. when YopM was present, but this pattern reversed at 3 h. At 6 h p.i., Cxcl10 mRNA was lower in parent-strain infected cells. We conclude that decreased Egr1 expression is a very early transcriptional effect of YopM and speculate that a pathway may exist from RSK1 through Egr1. These studies revealed novel early transcriptional effects of YopM but point to a time after 18 h of infection when critical transitional events lead to later major effects on cytokine gene transcription
- …