51 research outputs found
Recommended from our members
Liquid Metal Bond for Improved Heat Transfer in LWR Fuel Rods
A liquid metal (LM) consisting of 1/3 weight fraction each of Pb, Sn, and Bi has been proposed as the bonding substance in the pellet-cladding gap in place of He. The LM bond eliminates the large AT over the pre-closure gap which is characteristic of helium-bonded fuel elements. Because the LM does not wet either UO2 or Zircaloy, simply loading fuel pellets into a cladding tube containing LM at atmospheric pressure leaves unfilled regions (voids) in the bond. The HEATING 7.3 heat transfer code indicates that these void spaces lead to local fuel hot spots
Recommended from our members
Thermodynamics of the Volatilization of Actinind metals in the High-Temperature Treatment of Radioactive Wastes
We are performing a detailed study of the volatilization behavior of U, Pu and possibly Am and Np under conditions relevant to the thermal treatment (destruction) of actinide containing organic-based mixed and radioactive wastes. The primary scientific goal of the work is to develop a basic thermochemical understanding of actinide volatilization and partitioning/speciation behavior in the thermal processes that are central to DOE/EM's mixed waste treatment program. This subject addresses at least two key technical needs/problem areas recently identified by DOE/EM's Office of Science & Technology: emission-free destruction of organic wastes, and interactions between actinides and organic residues in materials stabilization. A sound basis for designing safe and effective treatment systems, and the ability to allay public concerns about radioactive fugitive emissions, will be the principal benefits of the project. The proposed work is a combination of experimental studies and thermodynamic modeling. Vapor pressure measurements will be made to determine U, Pu and possibly Am volatile species and the extent of their volatilization when UO2/U3O8, PuO2 and AmO2 solids are heated to temperatures of 500 to1200 C under pyrolyzing (reducing) conditions or under oxidizing conditions in the presence of chlorine. Work on uranium volatilization under reducing conditions is being performed in a laboratory at UC Berkeley in a collaboration with Professor D.R. Olander. In parallel with the experimental effort, a complete thermodynamic database for expected actinide gaseous species will be developed from literature data, from the proposed measurements, and from data predictions using bond energy correlation and statistical thermodynamics estimation methods
A new approach to the immobilisation of technetium and transuranics: Co-disposal in a zirconolite ceramic matrix
Technetium and transuranic elements (TRUs) are long-lived radionuclides, produced as a result of nuclear power generation. Co-immobilisation of these radionuclides in a ceramic wasteform is attractive as they are problematic for vitrification and would reduce the demand on a future geological disposal facility. A range of zirconolite ceramics have been produced via an oxide route using the surrogates Mo and Ce with a view to the co-immobilisation of Tc and TRUs. The resultant materials were characterised by XRD, SEM-EDX, TEM and XAS. Final phase assemblage was found to be affected by target stoichiometry, the Ca precursor used, processing temperature and processing atmosphere. Through appropriate optimisation of processing conditions and target stoichiometry, the results of this study show co-immobilisation of Tc and TRUs is a promising approach
General thermodynamics
The book’s methodology is unified, concise, and multidisciplinary, allowing students to understand how the principles of thermodynamics apply to all technical fields that touch upon this most fundamental of scientific theories. It also offers a rigorous approach to the quantitative aspects of thermodynamics, accompanied by clear explanations to help students transition smoothly from the physical concepts to their mathematical representation
- …