22 research outputs found

    Analysis of wave III of brain stem auditory evoked potential waveforms during microvascular decompression of cranial nerve VII for hemifacial spasm

    Get PDF
    INTRODUCTION:: Intraoperative monitoring of brain stem auditory evoked potential during microvascular decompression (MVD) prevent hearing loss (HL). Previous studies have shown that changes in wave III (wIII) are an early and sensitive sign of auditory nerve injury. OBJECTIVE:: To evaluate the changes of amplitude and latency of wIII of brain stem auditory evoked potential during MVD and its association with postoperative HL. Hearing loss was classified by American Academy of Otolaryngology - Head and Neck Surgery (AAO-HNS) criteria, based on changes in pure tone audiometry and speech discrimination score. METHODS:: Retrospective analysis of wIII in patients who underwent intraoperative monitoring with brain stem auditory evoked potential during MVD was performed. A univariate logistic regression analysis was performed on independent variables amplitude of wIII and latency of wIII at change max and On-Skin, or a final recording at the time of skin closure. A further analysis for the same variables was performed adjusting for the loss of wave. RESULTS:: The latency of wIII was not found to be significantly different between groups I and II. The amplitude of wIII was significantly decreased in the group with HL. Regression analysis did not find any increased odds of HL with changes in the amplitude of wIII. CONCLUSIONS:: Changes in wave III did not increase the odds of HL in patients who underwent brain stem auditory evoked potential s during MVD. This information might be valuable to evaluate the value of wIII as an alarm criterion during MVD to prevent HL. © 2014 by the American Clinical Neurophysiology Society

    Diagnostic accuracy of motor evoked potentials to detect neurological deficit during idiopathic scoliosis correction:a systematic review

    Get PDF
    OBJECTIVE The goal of this study was to evaluate the efficacy of intraoperative transcranial motor evoked potential (TcMEP) monitoring in predicting an impending neurological deficit during corrective spinal surgery for patients with idiopathic scoliosis (IS). METHODS The authors searched the PubMed and Web of Science database for relevant lists of retrieved reports and/or experiments published from January 1950 through October 2014 for studies on TcMEP monitoring use during IS surgery. The primary analysis of this review fit the operating characteristic into a hierarchical summary receiver operating characteristic curve model to determine the efficacy of intraoperative TcMEP-predicted change. RESULTS Twelve studies, with a total of 2102 patients with IS were included. Analysis found an observed incidence of neurological deficits of 1.38% (29/2102) in the sample population. Of the patients who sustained a neurological deficit, 82.8% (24/29) also had irreversible TcMEP change, whereas 17.2% (5/29) did not. The pooled analysis using the bivariate model showed TcMEP change with sensitivity (mean 91% [95% CI 34%-100%]) and specificity (mean 96% [95% CI 92-98%]). The diagnostic odds ratio indicated that it is 250 times more likely to observe significant TcMEP changes in patients who experience a new-onset motor deficit immediately after IS correction surgery (95% CI 11-5767). TcMEP monitoring showed high discriminant ability with an area under the curve of 0.98. CONCLUSIONS A patient with a new neurological deficit resulting from IS surgery was 250 times more likely to have changes in TcMEPs than a patient without new deficit. The authors' findings from 2102 operations in patients with IS show that TcMEP monitoring is a highly sensitive and specific test for detecting new spinal cord injuries in patients undergoing corrective spinal surgery for IS. They could not assess the value of TcMEP monitoring as a therapeutic adjunct owing to the limited data available and their study design

    Brainstem Auditory Evoked Potentials' Diagnostic Accuracy for Hearing Loss: Systematic Review and Meta-Analysis

    Get PDF
    Background: Microvascular decompression (MVD) utilizes brainstem auditory evoked potential (BAEP) intraoperative monitoring to reduce the risk of iatrogenic hearing loss. Studies report varying efficacy and hearing loss rates during MVD with intraoperative monitoring. Objectives: This study aims to perform a comprehensive review and study of diagnostic accuracy of BAEPs during MVD to predict hearing loss in studies published from January 1984 to December 2013. Methods: The PubMed/MEDLINE and World Science databases were searched. Studies performed MVD for trigeminal neuralgia, hemifacial spasm, glossopharyngeal neuralgia or geniculate neuralgia and monitored intraoperative BAEPs to prevent hearing loss. Retrospectively, BAEP parameters were compared with postoperative hearing. The diagnostic accuracy of significant change in BAEPs, which includes loss of response, was tested using summary receiver operative curve and diagnostic odds ratio (DOR). Results: A total of 13 studies were included in the analysis with a total of 2,540 cases. Loss of response pooled sensitivity, specificity, and DOR with 95% confidence interval being 74% (60–84%), 98% (88–100%), and 69.3 (18.2–263%), respectively. The similar significant change results were 88% (77–94%), 63% (40–81%), and 9.1 (3.9–21.6%). Conclusion: Patients with hearing loss after MVD are more likely to have shown loss of BAEP responses intraoperatively. Loss of responses has high specificity in evaluating hearing loss. Patients undergoing MVD should have BAEP monitoring to prevent hearing loss

    Subthalamic Nucleus and Sensorimotor Cortex Activity During Speech Production

    Get PDF
    The sensorimotor cortex is somatotopically organized to represent the vocal tract articulators such as lips, tongue, larynx, and jaw. How speech and articulatory features are encoded at the subcortical level, however, remains largely unknown. We analyzed LFP recordings from the subthalamic nucleus (STN) and simultaneous electrocorticography recordings from the sensorimotor cortex of 11 human subjects (1 female) with Parkinson´s disease during implantation of deep-brain stimulation (DBS) electrodes while they read aloud three-phoneme words. The initial phonemes involved either articulation primarily with the tongue (coronal consonants) or the lips (labial consonants). We observed significant increases in high-gamma (60?150 Hz) power in both the STN and the sensorimotor cortex that began before speech onset and persisted for the duration of speech articulation. As expected from previous reports, in the sensorimotor cortex, the primary articulators involved in the production of the initial consonants were topographically represented by high-gamma activity. We found that STN high-gamma activity also demonstrated specificity for the primary articulator, although no clear topography was observed. In general, subthalamic high-gamma activity varied along the ventral?dorsal trajectory of the electrodes, with greater high-gamma power recorded in the dorsal locations of the STN. Interestingly, the majority of significant articulator-discriminative activity in the STN occurred before that in sensorimotor cortex. These results demonstrate that articulator-specific speech information is contained within high-gamma activity of the STN, but with different spatial and temporal organization compared with similar information encoded in the sensorimotor cortex.Fil: Chrabaszcz, Anna. University of Pittsburgh; Estados UnidosFil: Neumann, Wolf Julian. Universität zu Berlin; AlemaniaFil: Stretcu, Otilia. University of Pittsburgh; Estados UnidosFil: Lipski, Witold J.. University of Pittsburgh; Estados UnidosFil: Dastolfo Hromack, Christina A.. University of Pittsburgh; Estados UnidosFil: Bush, Alan. University of Pittsburgh; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Wang, Dengyu. Tsinghua University; China. University of Pittsburgh; Estados UnidosFil: Crammond, Donald J.. University of Pittsburgh; Estados UnidosFil: Shaiman, Susan. University of Pittsburgh; Estados UnidosFil: Dickey, Michael W.. University of Pittsburgh; Estados UnidosFil: Holt, Lori L.. University of Pittsburgh; Estados UnidosFil: Turner, Robert S.. University of Pittsburgh; Estados UnidosFil: Fiez, Julie A.. University of Pittsburgh; Estados UnidosFil: Richardson, R. Mark. University of Pittsburgh; Estados Unido

    Diagnostic accuracy of somatosensory evoked potential monitoring during scoliosis fusion

    Get PDF
    The goal of this review was to ascertain the diagnostic accuracy of intraoperative somatosensory evoked potential (SSEP) changes to predict perioperative neurological outcome in patients undergoing spinal deformity surgery to correct adolescent idiopathic scoliosis (AIS). The authors searched PubMed/MEDLINE and World Science databases to retrieve reports and/or experiments from January 1950 through January 2014 for studies on SSEP use during AIS surgery. All motor and sensory deficits were noted in the neurological examination administered after the procedure which was used to determine the effectiveness of SSEP as an intraoperative monitoring technique. Fifteen studies identified a total of 4763 procedures on idiopathic patients. The observed incidence of neurological deficits was 1.11% (53/4763) of the sample population. Of the patients with new postoperative neurological deficits 75.5% (40/53) showed significant SSEP changes, and 24.5% (13/53) did not show significant change. Pooled analysis using the bivariate model showed SSEP change with pooled sensitivity (average 84%, 95% confidence interval 59-95%) and specificity (average 98%, 95% confidence interval 97-99%). The diagnostic odds ratio of a patient who had a new neurological deficit with SSEP changes was a diagnostic odds ratio of 340 (95% confidence interval 125-926). Overall, detection of SSEP changes had excellent discriminant ability with an area under the curve of 0.99. Our meta-analysis covering 4763 operations on idiopathic patients showed that it is a highly sensitive and specific test and that iatrogenic spinal cord injury resulting in new neurological deficits was 340 times more likely to have changes in SSEP compared to those without any new deficits

    High frequency activation data used to validate localization of cortical electrodes during surgery for deep brain stimulation

    No full text
    Movement related synchronization of high frequency activity (HFA, 76–100 Hz) is a somatotopic process with spectral power changes occurring during movement in the sensorimotor cortex (Miller et al., 2007) [1]. These features allowed movement-related changes in HFA to be used to functionally validate the estimations of subdural electrode locations, which may be placed temporarily for research in deep brain stimulation surgery, using the novel tool described in Randazzo et al. (2015) [2]. We recorded electrocorticography (ECoG) signals and localized electrodes in the region of the sensorimotor cortex during an externally cued hand grip task in 8 subjects. Movement related HFA was determined for each trial by comparing HFA spectral power during movement epochs to pre-movement baseline epochs. Significant movement related HFA was found to be focal in time and space, occurring only during movement and only in a subset of electrodes localized to the pre- and post-central gyri near the hand knob. To further demonstrate the use of movement related HFA to aid electrode localization, we provide a sample of the electrode localization tool, with data loaded to allow readers to map movement related HFA onto the cortical surface of a sample patient
    corecore