61 research outputs found

    IMMUNOPATHOGENESIS OF ACUTE CENTRAL NERVOUS SYSTEM DISEASE PRODUCED BY LYMPHOCYTIC CHORIOMENINGITIS VIRUS : II. ADOPTIVE IMMUNIZATION OF VIRUS CARRIERS

    Get PDF
    Lymphocytic choriomeningitis (LCM) virus carriers were established by intracerebral inoculation of adult BALB/c mice followed by a single dose of cyclophosphamide (CY) (150 mg/kg) 3 days after infection, and by intracerebral injection within 24 hr of birth. These carriers were then adoptively immunized with spleen cells or serum from immune or normal BALB/c donors. Transfer of immune spleen cells into drug-induced carriers consistently resulted in acutely fatal choriomeningitis, histologically strikingly similar to classical LCM. Normal spleen cells or immune serum failed to produce either central nervous system (CNS) pathology or illness with any regularity. In addition, focal necrosis of the cerebellum was seen after adoptive immunization of drug-induced carriers but only when mice received cells at least 3 wk after inoculation, which is probably explained by the gradual spread of infection from membranes to the neural parenchyma during the first month after establishment of the carrier state in adult mice. Immune spleen cells, when transferred to neonatal carriers, led to a decrease in virus titers in blood and brains and to development of antibody without acute CNS disease. It appears that the production of fatal choriomeningitis after LCM infection is determined in part by the distribution of viral antigen, and this is markedly different in neonatal and drug-induced carriers at the time of cell transfer. Another factor of potential importance is the much higher level of circulating viral antigen in the plasma of neonatal than in that of drug-induced LCM carriers. Classical LCM disease can only be transferred by immune lymphoid cells and not by antiserum. Furthermore, little or no complement-fixing (CF) antibody was found in the plasma of mice dying of acute choroiditis. These observations strongly suggest that acute choroiditis is dependent upon the cell-mediated immune response

    IMMUNOPATHOGENESIS OF ACUTE CENTRAL NERVOUS SYSTEM DISEASE PRODUCED BY LYMPHOCYTIC CHORIOMENINGITIS VIRUS : I. CYCLOPHOSPHAMIDE-MEDIATED INDUCTION OF THE VIRUS-CARRIER STATE IN ADULT MICE

    Get PDF
    A single dose of 150 mg/g of cyclophosphamide (CY), given 3 days after intracerebral (i.c.) inoculation of lymphocytic choriomeningitis (LCM) virus, protected over 90% of adult BALB/c mice against acutely fatal choriomeningitis. Surviving mice became persistently infected carriers, with high virus titers in blood and brain. Immunofluorescent examination of the brain showed that in CY-induced carriers infection was initially confined to the choroid plexus, ependyma, and leptomeninges, but over the next 30 days gradually spread to the neural parenchyma, most notably to the molecular layer of the cerebellum. By contrast, LCM virus-carrier mice produced by neonatal virus injection and examined as adults, showed a much less marked infection of choroid plexus and much more widespread infection of parenchyma, with a different distribution among brain nuclei, including heavy infection of the Purkinje cells of the cerebellum

    Multifocal Vasculopathy Due to Varicella-Zoster Virus (VZV): Serial Analysis of VZV DNA and Intrathecal Synthesis of VZV Antibody in Cerebrospinal Fluid

    Get PDF
    Recognition of multifocal vasculopathy due to varicella-zoster virus (VZV) is often problematic. We describe a human immunodeficiency virus—infected patient who had progressive central nervous system disease for >3 months. Both VZV DNA and antibody were detected in cerebrospinal fluid (CSF) specimens; serial polymerase chain reaction analyses confirmed the diagnosis and guided the duration of therapy. Reduced ratios of VZV antibody in serum to that in CSF were also demonstrate

    Subclinical Shed of Infectious Varicella zoster Virus in Astronauts

    Get PDF
    Aerosol borne varicella zoster virus (VZV) enters the nasopharynx and replicates in tonsillar T-cells, resulting in viremia and varicella (chickenpox). Virus then becomes latent in cranial nerve, dorsal root and autonomic nervous system ganglia along the entire neuraxis (1). Decades later, as cell-mediated immunity to VZV declines (4), latent VZV can reactivate to produce zoster (shingles). Infectious VZV is present in patients with varicella or zoster, but shed of infectious virus in the absence of disease has not been shown. We previously detected VZV DNA in saliva of astronauts during and shortly after spaceflight, suggesting stress induced subclinical virus reactivation (3). We show here that VZV DNA as well as infectious virus in present in astronaut saliva. VZV DNA was detected in saliva during and after a 13-day spaceflight in 2 of 3 astronauts (Fig. panel A). Ten days before liftoff, there was a rise in serum anti-VZV antibody in subjects 1 and 2, consistent with virus reactivation. In subject 3, VZV DNA was not detected in saliva, and there was no rise in anti-VZV antibody titer. Subject 3 may have been protected from virus reactivation by having zoster <10 years ago, which provides a boost in cell-medicated immunity to VZV (2). No VZV DNA was detected in astronaut saliva months before spaceflight, or in saliva of 10 age/sex-matched healthy control subjects sampled on alternate days for 3 weeks (88 saliva samples). Saliva taken 2-6 days after landing from all 3 subjects was cultured on human fetal lung cells (Fig. panel B). Infectious VZV was recovered from saliva of subjects 1 and 2 on the second day after landing. Virus specificity was confirmed by antibody staining and DNA analysis which showed it to be VZV of European descent, common in the US (5). Further, both antibody staining and DNA PCR demonstrated that no HSV-1 was detected in any infected culture. This is the first report of infectious VZV shedding in the absence of clinical disease. Spaceflight presents a uniquely stressful environment which includes physical isolation and confinement, anxiety, sleep deprivation, as well as exposure to increased radiation and microgravity. It is interesting that in our study, VZV and not HSV-1 reactivation was detected, since stress-induced HSV-1 reactivation has been reported (6). Future studies are needed to determine the specific inducer of VZV reactivation

    Stress-Induced Subclinical Reactivation of Varicella Zoster Virus in Astronauts

    Get PDF
    After primary infection, varicella-zoster virus (VZV) becomes latent in ganglia. VZV reactivation occurs primarily in elderly individuals, organ transplant recipients, and patients with cancer and AIDS, correlating with a specific decline in cell-mediated immunity to VZV. VZV can also reactivate after surgical stress. To determine whether VZV can also reactivate after acute non-surgical stress, we examined total DNA extracted from 312 saliva samples of eight astronauts before, during and after space flight for VZV DNA by PCR: 112 samples were obtained 234 to 265 days before flight, 84 samples on days 2 through 13 of space flight, and 116 samples on days 1 through 15 after flight. Before space flight only one of the 112 saliva samples from a single astronaut was positive for VZV DNA. In contrast, during and after space flight, 61 of 200 (30%) saliva samples were positive in all 8 astronauts. No VZV DNA was detected in any of 88 saliva samples from 10 healthy control subjects. These data indicate that VZV can reactivate subclinically in healthy individuals after acute stress

    Varicella Zoster Virus in Saliva of Patients With Herpes Zoster

    Get PDF
    Background. VZV DNA is present in saliva of healthy astronauts and patients with Ramsay Hunt syndrome (geniculate zoster). We hypothesized that a prospective analysis of patients with zoster would detect VZV in saliva independent of zoster location. Methods. We treated 54 patients with valacyclovir. On the first treatment day, 7- and 14-days later, pain was scored and saliva examined for VZV DNA. Saliva from six subjects with chronic pain and 14 healthy subjects was similarly studied. Results. Follow-up data was available for 50/54 patients. Pain decreased in 43/50 (86 percent), disappeared in 37 (74 percent), recurred after disappearing in three (6 percent) and increased in four (8 percent). VZV DNA was found in every patient the day treatment was started, decreased in 47/50 (94 percent), transiently increased in three (6 percent) before decreasing, increased in two (4 percent) and disappeared in 41 (82 percent). There was a positive correlation between the presence of VZV DNA and pain, as well as between the VZV DNA copy number and pain (P<0.0005). Saliva of two patients was cultured, and infectious VZV was isolated from one. VZV DNA was present in one patient before rash and in four patients after pain resolved, and not in any control subjects. Conclusion. VZV DNA is present in saliva of zoster patients

    Evolutionary autonomous agents and the nature of apraxia

    Get PDF
    BACKGROUND: Evolutionary autonomous agents are robots or robot simulations whose controller is a dynamical neural network and whose evolution occurs autonomously under the guidance of a fitness function without the detailed or explicit direction of an external programmer. They are embodied agents with a simple neural network controller and as such they provide the optimal forum by which sensorimotor interactions in a specified environment can be studied without the computational assumptions inherent in standard neuroscience. METHODS: Evolutionary autonomous agents were evolved that were able to perform identical movements under two different contexts, one which represented an automatic movement and one which had a symbolic context. In an attempt to model the automatic-voluntary dissociation frequently seen in ideomotor apraxia, lesions were introduced into the neural network controllers resulting in a behavioral dissociation with loss of the ability to perform the movement which had a symbolic context and preservation of the simpler, automatic movement. RESULTS: Analysis of the changes in the hierarchical organization of the networks in the apractic EAAs demonstrated consistent changes in the network dynamics across all agents with loss of longer duration time scales in the network dynamics. CONCLUSION: The concepts of determinate motor programs and perceptual representations that are implicit in the present day understanding of ideomotor apraxia are assumptions inherent in the computational understanding of brain function. The strength of the present study using EAAs to model one aspect of ideomotor apraxia is the absence of these assumptions and a grounding of all sensorimotor interactions in an embodied, autonomous agent. The consistency of the hierarchical changes in the network dynamics across all apractic agents demonstrates that this technique is tenable and will be a valuable adjunct to a computational formalism in the understanding of the physical basis of neurological disorders
    • …
    corecore