351 research outputs found

    Nonmethane hydrocarbon chemistry in the remote marine atmosphere

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, 1991.Vita.Includes bibliographical references (p. 169-173).by Neil McPherson Donahue.Ph.D

    Tutorial : Dynamic organic growth modeling with a volatility basis set

    Get PDF
    Organic aerosols are ubiquitous in the atmosphere and oxygenated organics are a major driver of aerosol growth. The volatility basis set (VBS) as introduced by Donahue et al. (2006, 2011) is often used to simplify the partitioning behavior of the huge variety of atmospheric organics. Recently, the VBS was used to dynamically model aerosol growth from the smallest sizes onwards. This tutorial is intended to equip the reader with the necessary tools to facilitate organic growth modelling based on gas-phase measurements of oxygenated organics using a 2-dimensional VBS. We start with a contextualization of the VBS in partitioning theory and point out the need for dynamic modeling. We provide an overview on the most common methods to estimate the volatility of oxygenated organics and give detailed instruction on how to construct the binned VBS. We then explain the dynamic condensation model including solution and curvature effects. Furthermore, we provide a python package for VBS growth calculations and show with two examples from ambient and chamber measurements how growth rates can be calculated. Last, we summarize the limitation of this approach and outline necessary future developments.Peer reviewe

    A two-dimensional volatility basis set – Part 2: Diagnostics of organic-aerosol evolution

    Get PDF
    We discuss the use of a two-dimensional volatility-oxidation space (2-D-VBS) to describe organic-aerosol chemical evolution. The space is built around two coordinates, volatility and the degree of oxidation, both of which can be constrained observationally or specified for known molecules. Earlier work presented the thermodynamics of organics forming the foundation of this 2-D-VBS, allowing us to define the average composition (C, H, and O) of organics, including organic aerosol (OA) based on volatility and oxidation state. Here we discuss how we can analyze experimental data, using the 2-D-VBS to gain fundamental insight into organic-aerosol chemistry. We first present a well-understood "traditional" secondary organic aerosol (SOA) system – SOA from α-pinene + ozone, and then turn to two examples of "non-traditional" SOA formation – SOA from wood smoke and dilute diesel-engine emissions. Finally, we discuss the broader implications of this analysis

    Unimolecular Decay of the Dimethyl-Substituted Criegee Intermediate in Alkene Ozonolysis : Decay Time Scales and the Importance of Tunneling

    Get PDF
    We used the steady-state master equation to model unimolecular decay of the Criegee intermediate formed from ozonolysis of 2,3-dimethyl-2-butene (tetramethylethylene, TME). Our results show the relative importance and time scales for both the prompt and thermal unimolecular decay of the dimethyl-substituted Criegee intermediate, (CH3)(2)COO. Calculated reactive fluxes show the importance of quantum mechanical tunneling for both prompt and thermal decay to OH radical products. We constrained the initial energy distribution of chemically activated (CH3)(2)COO formed in TME ozonolysis by combining microcanonical rates k(E) measured experimentally under collision-free conditions and modeled using semiclassical transition-state theory (SCTST) with pressure dependent yields of stabilized Criegee intermediates measured with scavengers in flow-tube experiments. Thermal decay rates under atmospheric conditions k(298 K, 1 atm) increase by more than 1 order of magnitude when tunneling is included. Accounting for tunneling has important consequences for interpreting pressure dependent yields of stabilized Criegee intermediates, particularly with regard to the fraction of Criegee intermediates formed in the zero-pressure limit.Peer reviewe

    Precursor apportionment of atmospheric oxygenated organic molecules using a machine learning method

    Get PDF
    Publisher Copyright: © 2023 The Author(s). Published by the Royal Society of Chemistry.Gas-phase oxygenated organic molecules (OOMs) can contribute significantly to both atmospheric new particle growth and secondary organic aerosol formation. Precursor apportionment of atmospheric OOMs connects them with volatile organic compounds (VOCs). Since atmospheric OOMs are often highly functionalized products of multistep reactions, it is challenging to reveal the complete mapping relationships between OOMs and their precursors. In this study, we demonstrate that the machine learning method is useful in attributing atmospheric OOMs to their precursors using several chemical indicators, such as O/C ratio and H/C ratio. The model is trained and tested using data acquired in controlled laboratory experiments, covering the oxidation products of four main types of VOCs (isoprene, monoterpenes, aliphatics, and aromatics). Then, the model is used for analyzing atmospheric OOMs measured in both urban Beijing and a boreal forest environment in southern Finland. The results suggest that atmospheric OOMs in these two environments can be reasonably assigned to their precursors. Beijing is an anthropogenic VOC dominated environment with ~64% aromatic and aliphatic OOMs, and the other boreal forested area has ~76% monoterpene OOMs. This pilot study shows that machine learning can be a promising tool in atmospheric chemistry for connecting the dots.Peer reviewe
    • …
    corecore