Tutorial : Dynamic organic growth modeling with a volatility basis set

Abstract

Organic aerosols are ubiquitous in the atmosphere and oxygenated organics are a major driver of aerosol growth. The volatility basis set (VBS) as introduced by Donahue et al. (2006, 2011) is often used to simplify the partitioning behavior of the huge variety of atmospheric organics. Recently, the VBS was used to dynamically model aerosol growth from the smallest sizes onwards. This tutorial is intended to equip the reader with the necessary tools to facilitate organic growth modelling based on gas-phase measurements of oxygenated organics using a 2-dimensional VBS. We start with a contextualization of the VBS in partitioning theory and point out the need for dynamic modeling. We provide an overview on the most common methods to estimate the volatility of oxygenated organics and give detailed instruction on how to construct the binned VBS. We then explain the dynamic condensation model including solution and curvature effects. Furthermore, we provide a python package for VBS growth calculations and show with two examples from ambient and chamber measurements how growth rates can be calculated. Last, we summarize the limitation of this approach and outline necessary future developments.Peer reviewe

    Similar works