43 research outputs found

    Block iterative restoration of astronomical images with the massively parallel processor

    Get PDF
    A method is described for algebraic image restoration capable of treating astronomical images. For a typical 500 x 500 image, direct algebraic restoration would require the solution of a 250,000 x 250,000 linear system. The block iterative approach is used to reduce the problem to solving 4900 121 x 121 linear systems. The algorithm was implemented on the Goddard Massively Parallel Processor, which can solve a 121 x 121 system in approximately 0.06 seconds. Examples are shown of the results for various astronomical images

    A Distribution of Large Particles in the Coma of Comet 103P/Hartley 2

    Full text link
    The coma of comet 103P/Hartley 2 has a significant population of large particles observed as point sources in images taken by the Deep Impact spacecraft. We measure their spatial and flux distributions, and attempt to constrain their composition. The flux distribution of these particles implies a very steep size distribution with power-law slopes ranging from -6.6 to -4.7. The radii of the particles extend up to 20 cm, and perhaps up to 2 m, but their exact sizes depend on their unknown light scattering properties. We consider two cases: bright icy material, and dark dusty material. The icy case better describes the particles if water sublimation from the particles causes a significant rocket force, which we propose as the best method to account for the observed spatial distribution. Solar radiation is a plausible alternative, but only if the particles are very low density aggregates. If we treat the particles as mini-nuclei, we estimate they account for <16-80% of the comet's total water production rate (within 20.6 km). Dark dusty particles, however, are not favored based on mass arguments. The water production rate from bright icy particles is constrained with an upper limit of 0.1 to 0.5% of the total water production rate of the comet. If indeed icy with a high albedo, these particles do not appear to account for the comet's large water production rate. production rate. Erratum: We have corrected the radii and masses of the large particles of comet 103P/Hartley 2 and present revised conclusions in the attached erratum.Comment: Original article: 46 pages, 17 figures, 5 tables, published in Icarus. Erratum: 5 pages, 1 table, accepted for publication in Icaru

    Reducing the Read Noise of the James Webb Space Telescope Near Infrared Spectrograph Detector Subsystem

    Get PDF
    We describe a Wiener optimal approach to using the reference output and reference pixels that are built into Teledyne's HAWAII-2RG detector arrays. In this way, we are reducing the total noise per approximately 1000 second 88 frame up-the-ramp dark integration from about 6.5 e- rms to roughly 5 e- rms. Using a principal components analysis formalism, we achieved these noise improvements without altering the hardware in any way. In addition to being lower, the noise is also cleaner with much less visible correlation. For example, the faint horizontal banding that is often seen in HAWAII-2RG images is almost completely removed. Preliminary testing suggests that the relative gains are even higher when using non flight grade components. We believe that these techniques are applicable to most HAWAII-2RG based instruments

    Emission Line Galaxies in the STIS Parallel Survey I: Observations and Data Analysis

    Full text link
    In the first three years of operation STIS obtained slitless spectra of approximately 2500 fields in parallel to prime HST observations as part of the STIS Parallel Survey (SPS). The archive contains almost 300 fields at high galactic latitude (|b|>30) with spectroscopic exposure times greater than 3000 seconds. This sample contains 220 fields (excluding special regions and requiring a consistent grating angle) observed between 6 June 1997 and 21 September 2000, with a total survey area of about 160 square arcminutes. At this depth, the SPS detects an average of one emission line galaxy per three fields. We present the analysis of these data, and the identification of 131 low to intermediate redshift galaxies detected by optical emission lines. The sample contains 78 objects with emission lines that we infer to be redshifted [OII]3727 emission at 0.43<z<1.7. The comoving number density of these objects is comparable to that of H-alpha emitting galaxies in the NICMOS parallel observations. One quasar and three probable Seyfert galaxies are detected. Many of the emission-line objects show morphologies suggestive of mergers or interactions. The reduced data are available upon request from the authors.Comment: 58 preprint pages, including 26 figures; accepted for publication in ApJ

    Observations of the Crab Nebula and its pulsar in the far-ultraviolet and in the optical

    Full text link
    We present HST/STIS far-UV observations of the Crab nebula and its pulsar. Broad, blueshifted absorption arising in the nebula is seen in C IV 1550, reaching about 2500 km/s. This can be interpreted as evidence for a fast outer shell, and we adopt a spherically symmetric model to constrain the properties of this. We find that the density appears to decrease outward in the shell. A lower limit to the mass is 0.3 solar masses with an accompanying kinetic energy of 1.5EE{49} ergs. A massive 10^{51} erg shell cannot be excluded, but is less likely if the density profile is much steeper than R^{-4} and the velocity is <6000 km/s. The observations cover the region 1140-1720 A. With the time-tag mode of the spectrograph we obtain the pulse profile. It is similar to that in the near-UV, although the primary peak is marginally narrower. Together with the near-UV data, and new optical data from NOT, our spectrum of the pulsar covers the entire region from 1140-9250 A. Dereddening the spectrum gives a flat spectrum for E(B-V)=0.52, R=3.1. This dereddened spectrum of the Crab pulsar can be fitted by a power law with spectral index alpha_{\nu} = 0.11 +/- 0.04. The main uncertainty is the amount and characteristics of the interstel- lar reddening, and we have investigated the dependence of \alpha_{\nu} on E(B-V) and R. In the extended emission covered by our 25" x 0.5" slit in the far-UV, we detect C IV 1550 and He II 1640 emission lines from the Crab nebula. Several interstellar absorption lines are detected toward the pulsar. The Ly alpha absorption indicates a column density of 3.0+/-0.5\EE{21} cm^{-2} of neutral hydrogen, which agrees well with our estimate of E(B-V)=0.52 mag. Other lines show no evidence of severe depletion of metals in atomic gas.Comment: 18 pages emulateapj style, including 10 figures. ApJ, accepte

    Reducing the Read Noise of HAWAII-2RG Detector Systems with Improved Reference Sampling and Subtraction (IRS2)

    Get PDF
    IRS2 is a Wiener-optimal approach to using all of the reference information that Teledyne's HAWAII-2RG detector arrays provide. Using a new readout pattern, IRS2 regularly interleaves reference pixels with the normal pixels during readout. This differs from conventional clocking, in which the reference pixels are read out infrequently, and only in a few rows and columns around the outside edges of the detector array. During calibration, the data are processed in Fourier space, which is <;:lose to the noise's eigenspace. Using IRS2, we have reduced the read noise of the James Webb Space Telescope Near Infrared Spectrograph by 15% compared to conventional readout. We are attempting to achieve further gains by calibrating out recently recognized non-stationary noise that appears at the frame rate

    Limits on the Optical Brightness of the Epsilon Eridani Dust Ring

    Full text link
    The STIS/CCD camera on the {\em Hubble Space Telescope (HST)} was used to take deep optical images near the K2V main-sequence star ϵ\epsilon Eridani in an attempt to find an optical counterpart of the dust ring previously imaged by sub-mm observations. Upper limits for the optical brightness of the dust ring are determined and discussed in the context of the scattered starlight expected from plausible dust models. We find that, even if the dust is smoothly distributed in symmetrical rings, the optical surface brightness of the dust, as measured with the {\em HST}/STIS CCD clear aperture at 55 AU from the star, cannot be brighter than about 25 STMAG/"2^2. This upper limit excludes some solid grain models for the dust ring that can fit the IR and sub-mm data. Magnitudes and positions for \approx 59 discrete objects between 12.5" to 58" from ϵ\epsilon Eri are reported. Most if not all of these objects are likely to be background stars and galaxies.Comment: Revision corrects author lis
    corecore