13 research outputs found

    INVESTIGATION OF INOSINE AND HYPOXANTHINE AS BIOMARKERS OF CARDIAC ISCHEMIA IN PLASMA OF NON-TRAUMATIC CHEST PAIN PATIENTS AND A RAPID ANALYTICAL SYSTEM FOR ASSESSMENT

    Get PDF
    Each year in the U.S., approximately 7-8 million patients with non-traumatic chest pain visit hospital emergency departments (ED) for medical evaluation. It is estimated that approximately 2-5% of these patients are experiencing acute cardiac ischemia, but due to the shortcomings of current test methods, they are incorrectly diagnosed and discharged without appropriate treatment provided, thus leading to poor patient outcome and potential medical malpractice litigation.The goals of this research were to evaluate plasma samples for potential biomarker(s) of acute cardiac ischemia prior to heart tissue necrosis, and to ultimately develop a rapid method for detection of the potential biomarker(s) in human plasma. Initial experiments were performed using the mouse model, with subsequent evaluations on human plasma samples using high performance liquid chromatographic ultraviolet detection (HPLC-UV). The final phase of this research involved the development of a rapid luminometer test method (An HPLC-UV detection method was developed and utilized for inosine, hypoxanthine and other adenosine triphosphate (ATP) catabolic by-products in Krebs-Henseleit (Krebs) buffer solution, with analysis on perfusate samples from isolated mouse hearts undergoing 20 min acute global ischemia. The HPLC-UV method was modified for subsequent use on human plasma samples, obtained from hospital emergency department (ED) patients presenting with non-traumatic chest pain (potential acute cardiac ischemia) and from healthy normal individuals. The HPLC-UV (component quantification) and HPLC-MS (component identification) test methods utilized C18 column technology, mobile phases consisting of aqueous trifluoroacetic acid (0.05% TFA in deionized water pH 2.2, v/v) and methanol gradient to achieve component separation, with both utilizing simple sample preparations (e.g. direct injection of Krebs perfusate samples and centrifugal membrane filtration on plasma samples).Results of the animal experiments using isolated mouse hearts undergoing 20 min acute global ischemia demonstrated significant levels of endogenous inosine effluxed from the heart tissue, indicating its use as a potential candidate biomarker of acute cardiac ischemia. The HPLC results from human plasma representing ED non-traumatic chest pain patients demonstrated elevated levels of inosine (hypoxanthine precursor) and significant levels of hypoxanthine, which provided additional support for the use of these candidate biomarker(s) as a potential diagnostic tool for the initial acute cardiac ischemic event, prior to heart tissue necrosis.The final phase of this research focused on the development of a rapid, simple and sensitive chemiluminescence test method. Using a microplate luminometer with direct injectors and continuous mixing, the measurement of inosine and hypoxanthine in human plasma was achieved for healthy normal individuals and on patients with confirmed acute MI, with an analysis time of less than 5 minutes. The utility of this rapid luminescence technique would be the potential use at point-of-care (POC) services (e.g. hospital clinical laboratory or emergency medical services) as part of the initial ED treatment protocol on patients presenting with non-traumatic chest pain and signs/symptoms of acute myocardial ischemia or acute MI

    Phase I safety trial of intravenous ascorbic acid in patients with severe sepsis

    Get PDF
    Background Parenterally administered ascorbic acid modulates sepsis-induced inflammation and coagulation in experimental animal models. The objective of this randomized, double-blind, placebo-controlled, phase I trial was to determine the safety of intravenously infused ascorbic acid in patients with severe sepsis. Methods Twenty-four patients with severe sepsis in the medical intensive care unit were randomized 1:1:1 to receive intravenous infusions every six hours for four days of ascorbic acid: Lo-AscA (50 mg/kg/24 h, n = 8), or Hi-AscA (200 mg/kg/24 h, n = 8), or Placebo (5% dextrose/water, n = 8). The primary end points were ascorbic acid safety and tolerability, assessed as treatment-related adverse-event frequency and severity. Patients were monitored for worsened arterial hypotension, tachycardia, hypernatremia, and nausea or vomiting. In addition Sequential Organ Failure Assessment (SOFA) scores and plasma levels of ascorbic acid, C-reactive protein, procalcitonin, and thrombomodulin were monitored. Results Mean plasma ascorbic acid levels at entry for the entire cohort were 17.9 ± 2.4 μM (normal range 50-70 μM). Ascorbic acid infusion rapidly and significantly increased plasma ascorbic acid levels. No adverse safety events were observed in ascorbic acid-infused patients. Patients receiving ascorbic acid exhibited prompt reductions in SOFA scores while placebo patients exhibited no such reduction. Ascorbic acid significantly reduced the proinflammatory biomarkers C-reactive protein and procalcitonin. Unlike placebo patients, thrombomodulin in ascorbic acid infused patients exhibited no significant rise, suggesting attenuation of vascular endothelial injury. Conclusions Intravenous ascorbic acid infusion was safe and well tolerated in this study and may positively impact the extent of multiple organ failure and biomarkers of inflammation and endothelial injury

    Supplemental Protein on Performance of Lactating Beef Heifers

    Get PDF
    Feeding supplement with meadow hay increased weights and rebreeding performance of lactating 2-year-old heifers. Exposing non-cycling heifers to bulls two weeks before normal breeding and flushing on green grass stimulated cycling

    In vivo deuterium magnetic resonance imaging of xenografted tumors following systemic administration of deuterated water

    No full text
    Abstract In vivo deuterated water (2H2O) labeling leads to deuterium (2H) incorporation into biomolecules of proliferating cells and provides the basis for its use in cell kinetics research. We hypothesized that rapidly proliferating cancer cells would become preferentially labeled with 2H and, therefore, could be visualized by deuterium magnetic resonance imaging (dMRI) following a brief period of in vivo systemic 2H2O administration. We initiated systemic 2H2O administration in two xenograft mouse models harboring either human colorectal, HT-29, or pancreatic, MiaPaCa-2, tumors and 2H2O level of ~ 8% in total body water (TBW). Three schemas of 2H2O administration were tested: (1) starting at tumor seeding and continuing for 7 days of in vivo growth with imaging on day 7, (2) starting at tumor seeding and continuing for 14 days of in vivo growth with imaging on day 14, and (3) initiation of labeling following a week of in vivo tumor growth and continuing until imaging was performed on day 14. Deuterium chemical shift imaging of the tumor bearing limb and contralateral control was performed on either day 7 of 14 after tumor seeding, as described. After 14 days of in vivo tumor growth and 7 days of systemic labeling with 2H2O, a clear deuterium contrast was demonstrated between the xenografts and normal tissue. Labeling in the second week after tumor implantation afforded the highest contrast between neoplastic and healthy tissue in both models. Systemic labeling with 2H2O can be used to create imaging contrast between tumor and healthy issue, providing a non-radioactive method for in vivo cancer imaging
    corecore