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Abstract 
 
 
 

INVESTIGATION OF INOSINE AND HYPOXANTHINE AS BIOMARKERS OF 

CARDIAC ISCHEMIA IN PLASMA OF NON-TRAUMATIC CHEST PAIN PATIENTS 

AND A RAPID ANALYTICAL SYSTEM FOR ASSESSMENT 

By Don E. Farthing, Ph.D. 

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor 
of Philosophy at Virginia Commonwealth University. 

 

Virginia Commonwealth University, 2008 
 

Major Director:  H. THOMAS KARNES, Ph.D. 
PROFESSOR, DEPARTMENT OF PHARMACEUTICS 

 
 
 
 

Each year in the U.S., approximately 7-8 million patients with non-traumatic chest 

pain visit hospital emergency departments (ED) for medical evaluation.  It is estimated that 

approximately 2-5% of these patients are experiencing acute cardiac ischemia, but due to 

the shortcomings of current test methods, they are incorrectly diagnosed and discharged 

without appropriate treatment provided, thus leading to poor patient outcome and potential 

medical malpractice litigation.  The goals of this research were to evaluate plasma samples 
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for potential biomarker(s) of acute cardiac ischemia prior to heart tissue necrosis, and to 

ultimately develop a rapid method for detection of the potential biomarker(s) in human 

plasma.  Initial experiments were performed using the mouse model, with subsequent 

evaluations on human plasma samples using high performance liquid chromatographic 

ultraviolet detection (HPLC-UV).  The final phase of this research involved the 

development of a rapid luminometer test method (<10 min analysis time objective) to be 

potentially used in the clinical laboratory environment. 

 An HPLC-UV detection method was developed and utilized for inosine, 

hypoxanthine and other adenosine triphosphate (ATP) catabolic by-products in Krebs-

Henseleit (Krebs) buffer solution, with analysis on perfusate samples from isolated mouse 

hearts undergoing 20 min acute global ischemia.  The HPLC-UV method was modified for 

subsequent use on human plasma samples, obtained from hospital emergency department 

(ED) patients presenting with non-traumatic chest pain (potential acute cardiac ischemia) 

and from healthy normal individuals.  The HPLC-UV (component quantification) and 

HPLC-MS (component identification) test methods utilized C18 column technology, 

mobile phases consisting of aqueous trifluoroacetic acid (0.05% TFA in deionized water 

pH 2.2, v/v) and methanol gradient to achieve component separation, with both utilizing 

simple sample preparations (e.g. direct injection of Krebs perfusate samples and 

centrifugal membrane filtration on plasma samples). 

 Results of the animal experiments using isolated mouse hearts undergoing 20 min 

acute global ischemia demonstrated significant levels of endogenous inosine effluxed from 

the heart tissue, indicating its use as a potential candidate biomarker of acute cardiac 
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ischemia.  The HPLC results from human plasma representing ED non-traumatic chest 

pain patients demonstrated elevated levels of inosine (hypoxanthine precursor) and 

significant levels of hypoxanthine, which provided additional support for the use of these 

candidate biomarker(s) as a potential diagnostic tool for the initial acute cardiac ischemic 

event, prior to heart tissue necrosis. 

 The final phase of this research focused on the development of a rapid, simple and 

sensitive chemiluminescence test method.  Using a microplate luminometer with direct 

injectors and continuous mixing, the measurement of inosine and hypoxanthine in human 

plasma was achieved for healthy normal individuals and on patients with confirmed acute 

MI, with an analysis time of less than 5 minutes.  The utility of this rapid luminescence 

technique would be the potential use at point-of-care (POC) services (e.g. hospital clinical 

laboratory or emergency medical services) as part of the initial ED treatment protocol on 

patients presenting with non-traumatic chest pain and signs/symptoms of acute myocardial 

ischemia or acute MI. 
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CHAPTER 1. Background and Significance 
 

1.1 Introduction and Request for Additional Biomarkers 

Cardiovascular diseases (e.g. acute myocardial infarction (MI)) are the leading 

cause of mortality in the world [Naudziunas et al., 2005; Okrainec et al., 2004; Dorner et 

al., 2004, AHRQ, 2000].  Each year in the US, approximately 7-8 million patients present 

with non-traumatic chest pain and seek emergency medical treatment [Morrow et al., 

2007].  Current emergency medical evaluation on these patients suspected of having acute 

MI includes obtaining patient history, signs and symptoms, vitals, electrocardiogram 

(ECG) and blood evaluation for specific cardiac biomarkers [Beyerle, 2002; A.D.A.M. 

Inc., 2005; Lees, 2000].  However, the percent diagnostic accuracy of acute MI when using 

patient signs and symptoms, ECG and c-troponin is only approximately 50%.  With the 

addition of the recently FDA cleared albumin cobalt binding assay, the diagnostic accuracy 

improves to approximately 70%; hence the need for additional research for biomarkers of 

acute cardiac ischemia to further improve patient diagnostic accuracy is important. 

The hospital emergency department blood evaluation determines levels of several 

specific endogenous cardiac protein biomarkers (e.g. cardiac troponin I and T (cTnI, 

cTnT), creatine kinase-MB (CK-MB) isoform, and myoglobin).  However, these protein 

biomarkers are indicative of cardiac tissue necrosis, and are typically detected hours after 
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the acute cardiac event (infarct), and not at the time of acute cardiac ischemia, which may 

include angina (stable or unstable, but non-necrotic). 

One recent published scientific editorial requested the need for early onset 

biomarkers of acute cardiac ischemia prior to cardiac tissue necrosis [Morrow et al., 2003].  

Ideally, these early onset biomarkers would aid emergency medical services (EMS) 

personnel in the rapid diagnosis and treatment of initial acute cardiac ischemia (potentially 

acute MI), thus increasing the survival rate of acute MI victims every year.  One research 

group [Bhagavan et al., 2003] addressing the scientific editorial request, describes a blood 

measurement for ischemia modified albumin (IMA), which appears at an elevated level in 

the bloodstream from patients undergoing an ischemic cardiac event; however the author’s 

state that the colorimetric test would not discriminate between cardiac ischemic patients 

with and without acute MI (e.g. angina), and recent clinical evaluations of the test assay 

have reported significant false positive results. 

Table 1 depicts the US and world wide heart attack (HA) statistics compiled in 

2002 and clearly demonstrates the critical need for additional endogenous biomarkers of 

early onset cardiac ischemia [World Health Organization (WHO), 2002].  As can be seen 

from the WHO heart attack statistics table, approximately 24 individuals die every minute 

in the world from heart attacks, with many individuals waiting more than two hours before 

seeking medical attention.  The American Heart Association cites that approximately 75-

80% of the heart attacks occur at home, with up to 95% dying before ever reaching a 

hospital [American Heart Association Statistics, 2007].  Thus, the need for continued 
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Table 1.  World Health Organization (WHO) 2002 Heart Attack Statistics. 

Heart Attack (HA) Statistics (WHO 2002)

~1.1 million US heart 
attacks each year 

~32 million worldwide heart 
attacks each year 

• ~650,000 HA are first events 
• ~450,000 HA are recurrences
• ~511,000 HA are fatal each year

• ~47% HA victims die every day or
• ~1,400 HA victims die every day or
• ~58 HA victims die every hour or
• ~1 HA victim dies every minute

• ~50% HA victims wait >2 hrs. before
getting help

• ~40 - 75% die before reaching the hospital
• ~12.5 million HA are fatal each year

Worldwide statistics US statistics 

~24 HA victims die every minute

Heart Attack (HA) Statistics (WHO 2002) 
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additional research for additional biomarkers of acute cardiac ischemia is critical in 

addressing the health care community requests [Maisel et al., 2005, Morrow et al., 2007, 

Apple et al., 2005]. 

1.2 Biomarkers, Use and Requirements 

Biomarker is a term defined by the U.S. Food and Drug Administration (FDA) as 

“a characteristic that is objectively measured and evaluated as an indicator of normal 

biologic or pathogenic processes or pharmacological responses to a therapeutic 

intervention.” [FDA, Rockville, USA].  Examples of current biomarkers in human blood 

that are commonly used to aid in diagnosis and treatment of medical conditions are 

hemoglobin-A1c and glucose levels for diabetes, cardiac protein troponin I (cTnI) and 

creatine-kinase MB (CK-MB) isoenzyme (both being very specific to cardiac tissue) for 

acute MI, and hormone human chorionic gonadotropin (hCG) for pregnancy testing 

[Bloom et al., 2003]. 

A biomarker is classified as a surrogate endpoint, which is an objective 

characteristic, intended to substitute for a clinical (and sometimes subjective) endpoint 

[Biomarker World Congress 2007, USA].  For example, one clinical endpoint for acute MI 

can be how the person feels (e.g. chest pain, nausea, fatigue), which can be subjective and 

caused by other various medical conditions (Table 2).  However, using current biomarker 

surrogate endpoints for acute MI (elevated plasma concentrations of cardiac proteins 

myoglobin, CK-MB and cTnI or cTnT) significantly improves patient diagnostic accuracy, 

and may led to prompter emergency medical intervention (treatments), and improved 
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Table 2.  Listing of various medical conditions causing non-traumatic chest pain other than 

acute cardiac ischemia and acute MI.  Information tabulated from Prehospital Emergency 

Care, 7th Edition, Mistovich et al., 2004. 

Condition Symptom profile 

Gastroesophageal reflux Dull to sharp chest pain, chest pressure, nausea and vomiting 

Acid Reflux Dull chest pain, chest pressure, heartburn 

Angina Breathlessness or choking feeling, heavy weight or tightening 

across the upper chest 

Musculoskeletal Sharp pains confined to a specific area of the chest 

Pneumonia Sharp pain on side of the chest, anxiety, rapid breathing 

Aortic Dissection Ripping or tearing pain, shortness of breath, abdominal pain, 

fainting 

Nerve Impingement Shooting, burning pain, numbness 

Pulmonary Embolus Shortness of breath, rapid breathing and sharp pain in the mid 

chest 

Spontaneous Pneumothorax Shortness of breath, sharp chest pain, rapid heart rate, 

dizziness 

Acute Pericarditis Sharp or stabbing pain in the mid chest 

Heartburn Burning pain in chest, nausea, vomiting 

Asthma Shortness of breath, wheezing or cough 

Anxiety Palpitations, sweating, muscle tension, fatigue 

Peptic Ulcer Abdominal pain below the sternum, nausea, vomiting 
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patient outcomes.  A “routine biomarker” is currently defined as the use of FDA approved 

commercial kits and assays for testing in diagnostic labs (e.g. cTnI and CK-MB are routine 

biomarkers used as indicators of acute MI).  A “novel biomarker” is currently defined as a 

non-routine kit or assay “for research only,” and typically utilized in biotechnology 

(discovery) or academic environments [Biomarker World Congress 2007, USA]. 

An example of how one recent novel biomarker progressed into a routine 

biomarker is the current use of ischemia modified albumin as an indicator for acute cardiac 

ischemia.  A detailed description of this test will be later described in Section 1.4.  Many 

years of research (>10 years) went into the development of using ischemia modified 

albumin as a potential biomarker of acute cardiac ischemia, with the first US patent being 

filed in 1991 [Bar-Or et al, 1991], and subsequent FDA clearance for use 12 years later in 

2003 (assay was initially called albumin cobalt binding (ACB) and is currently called 

ischemia modified albumin (IMA)). 

 Some considerations are important in the discovery and development of a potential 

endogenous plasma biomarker.  If the biomarker is endogenous to plasma, it may exhibit 

circadian fluctuations in basal concentrations levels.  For example, C-reactive protein 

(CRP), which is currently recognized as an endogenous plasma biomarker of 

inflammation, has both seasonal and diurnal variation in a patient’s basal plasma 

concentration.  Thusly, if measuring CRP, it would have been important to document the 

date and time of the blood sample draw, as it may have affected the diagnostic 

interpretation of the laboratory sample results. 
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Several other important biomarker considerations are determining (or sourcing 

from reported literature) the half-life and whether co-existing medical conditions (e.g. 

kidney disease) affects the plasma biomarker concentrations.  Knowing the component 

half-life is important as some plasma biomarkers have very short half-lives (e.g. inosine is 

less than 5 minutes), while others may have longer half-lives (e.g. cTnI can be detected for 

several days).  It is well documented that patients diagnosed with chronic renal failure 

typically have high plasma levels of many constituents due to their kidney clearance 

problems.  Thus the need for their frequent hemodialysis treatments, and potential errors in 

interpreting their plasma test results.  Typically, plasma biomarker discoveries involve the 

use of techniques such as LC-MS, with subsequent clinical use of the FDA cleared 

biomarker typically employing automated clinical platforms utilizing immunoassay or 

enzymatic techniques [Biomarker World Congress, 2007]. 

Use of endogenous plasma biomarkers as medical diagnostic tools is a relatively 

new field in industry, as compared to discovery and development of drugs (pharmaceutical 

industry); however both industries are regulated by the US FDA.  One important difference 

between these two regulated industries is that when using endogenous plasma biomarkers 

as a diagnostic tool, it is important to demonstrate the proof-of-concept (proof-of-biology) 

on how the level of the biomarker relates to the associated disease condition.  Approval of 

pharmaceutical drugs typically requires clinical studies demonstrating patient safety and 

efficacy evaluations; however the exact biological mechanism-of-action is not always 

known (e.g. some cancer drugs are known to be efficacious, without fully understanding 

the exact mechanism of action). 
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For medical diagnostic biomarkers, it is important to link the biomarker with the 

disease condition and patient clinical outcome.  This requires either published scientific 

knowledge or demonstration of the mechanism-of-action on how the endogenous plasma 

biomarker change is associated with the disease condition.  For example, the human 

plasma level of cTnI is normally found at <0.05 µg/L in healthy normal individuals, but 

under conditions of acute cardiac MI, the levels of cTnI are significantly elevated (≥0.05 

µg/L) due to the affected heart tissue (necrotic) being diffused into the bloodstream, which 

causes the increase in the concentration of cardiac troponins (e.g. cTnI, cTnT).  Chapter 2 

of this research utilizes the mouse model to demonstrate the proof-of-concept (proof-of-

biology) that one ATP catabolic by-product, inosine, may be a potential candidate 

biomarker of acute global cardiac ischemia. 

Current requirements for proposed biomarker test methods to address are 

component specificity and sensitivity.  Specificity is a term defined as the uniqueness of 

the biomarker for the disease or condition for which it will be used to aid in patient 

diagnosis.  Specificity is the test procedure’s ability to measure a negative response 

(minimize false positives).  Conversely, sensitivity is a term defined as the ability of a test 

procedure to measure a positive response.  For many analytical measurements, sensitivity 

is directly related to the method detection limit and slope of the detector response relative 

to the concentration level of the analyte (e.g. low method detection limit and large positive 

slope typically indicates a sensitive test method).  The test method detection limit is an 

important parameter to determine and is defined as the ratio of analyte signal to matrix and 

instrument electronic noise.  The goal of a good biomarker test method is to possess both a 
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high specificity (reduce the number of false positive results) and high sensitivity (reduce 

the number of false negative results).  Insufficient evaluation of these criteria may lead to 

poor patient outcomes (e.g. false positives may lead to erroneous medical treatment(s) and 

psychological stress and false negatives may lead to poor patient prognosis, especially for 

cancer patients). 

As the field of medical diagnostics and use of biomarkers continues to grow, it is 

important to standardize the method development approach and validation requirements of 

biomarker assays.  In recent years, representatives from pharmaceutical, biotechnology, 

and medical diagnostic companies have jointly collaborated, and drafted initial guidelines 

to be used for biomarker method development and validation, covering both qualitative 

and quantitative assays [Lee et al., 2006].  Conferences such as the Biomarker World 

Congress have several meetings annually with attending representatives (domestic and 

international) from industry, biotechnology, academia, and government (e.g. FDA). 

Biomarker discovery and development success rate to the market place (i.e. clinical 

laboratory or point-of-care) is very similar to the pharmaceutical industry, with just a 

fraction of the discovered biomarkers being successfully utilized in the clinical laboratory.  

Although there has been approximately 4,000 biomarkers reported in the literature, less 

than 100 have been cleared for use by the FDA, and less than 10 are routinely used in the 

clinics [Biomarker World Congress, 2007].  Of the endogenous biomarkers that are 

currently being used, concentration level changes in plasma are all less than 10-fold 

increases, with most biomarkers having less than a 5-fold increase in concentration level 

[Biomarker World Congress, 2007].  As will be reported in Chapter 4 of this dissertation, 
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our proposed candidate biomarker(s) inosine and hypoxanthine from hospital room 

emergency room patients exhibiting non-traumatic chest pain; had plasma concentrations 

(called total hypoxanthine as inosine is converted to hypoxanthine using purine nucleoside 

phosphorylase enzyme) above the 5-fold increase typically found in the currently used 

FDA cleared biomarkers. 

1.3 Biomarkers of Acute Myocardial Infarction 

The biomarkers that are currently used for detection of acute MI are myoglobin, 

CK-MB and either cTnI or cTnT.  These are biomarkers of cardiac tissue necrosis and can 

be used individually, but more emphasis has been placed on using panels of these cardiac 

biomarkers together (e.g. simultaneous evaluation of myoglobin, CK-MB and cTnI).  The 

rationale for using a cardiac panel of biomarkers is that it improves the diagnostic 

accuracy, as ultimately more information is gathered to use for patient diagnosis.  There 

has been other cardiac biomarkers of acute MI over the years, many being replaced as new 

discoveries find better biomarkers demonstrating higher specificity and sensitivity (e.g. 

lactate dehydrogenase replaced by current acute MI biomarkers). 

As can be seen in Table 3 (Cortez Diagnostics, CA, USA) and Figure 1, the cardiac 

biomarkers have completely different onset and duration profiles (leading to different half-

lives).  Myoglobin (MW ~17 kDa) is found in muscle tissue and transports cellular oxygen 

consumed by muscle mitochondria.  Although it is a very sensitive biomarker of muscle 

tissue necrosis, it is not totally specific to heart tissue and can also be found in other 

muscle tissue (e.g. skeletal).  In a medical situation consisting of an ischemic event 

involving both cardiac and skeletal muscle, elevated levels of myoglobin may be present 
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Table 3.  Cardiac tissue necrosis biomarker detection time after AMI onset, normal 

individual plasma range, and the biomarker duration time (Information from Cardiac Panel 

Test Strip Information Sheet, Cortez Diagnostics, CA, USA). 

 

    Test Strip
Detection time Normal Remain cut-off

Marker after onset of AMI range elevated level 
     Myo 1-4 hrs 30 - 90 ng/ml < 12 hrs 70 ng/ml 

CK-MB 4-6 hrs < 5 ng/ml ~24 hrs 5 ng/ml 

cTnI 10-12 hrs ND 60-80 hrs 1 ng/ml 
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Figure 1.  Serum profile of plasma biomarkers (myoglobin, CK-MB, troponins, and lactate 

dehydrogenase (LD)) representing human cardiac tissue necrosis.  Profile depicts differing 

onset and duration of cardiac biomarkers after an acute MI event.  Picture with permission 

from Futura Publishing Company, Inc., NY, USA. 
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from either form of muscle, thus leading to potential confounding results if only using 

myoglobin as the cardiac biomarker. 

Instead, many clinical labs utilize multiple cardiac biomarkers (currently called 

cardiac panels) to improve patient diagnosis (increases predictive value).  CK-MB (MW ~ 

41 kDa) is an isoenzyme of the creatine kinase (CK) family of enzymes and is primarily 

found in heart muscle tissue.  Although it is more specific to heart muscle tissue than 

myoglobin, it can not be detected until approximately 4-6 hours after the acute MI event.  

The latest cardiac biomarkers to be utilized are the cardiac troponins (cTnI, MW 24 kDa 

and cTnT, MW 34 kDa).  These biomarkers are highly specific to cardiac muscle tissue, 

but like CK-MB, are not readily detected until 4-8 hours after the acute MI event.  The 

high specificity of the troponin proteins can be explained as both are structural components 

of the thin filament of cardiac muscle tissue; hence necrosis of the affected cardiac tissue 

followed by the body’s elimination of the necrotic tissue into the bloodstream, would cause 

a significant elevation of these biomarkers (which neither is normally found at detectable 

levels in the bloodstream with the currently used immunoassay techniques). 

1.4 Biomarkers of Acute Myocardial Ischemia 

There are several plasma biomarkers currently under evaluation for acute 

myocardial ischemia; however only one to date has been cleared for use by the FDA.  The 

current biomarker assays are ischemia modified albumin (IMA), unbound free fatty acids 

(FFAu) and choline [Apple et al., 2005].  Of the three, only IMA has received FDA 

clearance (2003) for marketing as a diagnostic cardiac biomarker.  It is worthwhile to 

briefly discuss each of these candidate biomarkers as to their proof of biology (if known) 
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and why they appear elevated in the bloodstream under conditions of acute cardiac 

ischemia. 

Choline (HOCH2CH2N+(CH3)3) is one major product formed from the 

phosphodiesteric cleavage of membrane phospholipid phosphatidylcholine.  During an 

ischemic event, phospholipase D (PLD) is activated and cleaves membrane 

phosphatidylcholine into phosphatidic acid and choline, which is subsequently released 

into the blood stream and can be detected.  Evaluation of choline was made using LC-MS 

technology.  At the time of the review article describing its potential use as a biomarker, it 

was recommended that the development of rapid point-of-care and central laboratory assay 

were still needed to further evaluate this biomarker’s usefulness [Apple et al, 2005].  This 

recommendation is not surprising as most clinical laboratories utilize commercially bought 

kit assays, which are typically immunological techniques (e.g. enzyme linked 

immunosorbent assay (ELISA)). 

Ischemia modified albumin (IMA) is the term given to serum albumin that has been 

modified by the reaction with free radicals generated by heart tissue undergoing acute 

cardiac ischemic conditions.  The premise of this biomarker candidate is that free radials 

(e.g. hydroxyl) generated by ischemic heart tissue can react with albumin in the 

bloodstream forming a “modified albumin”, which can be subsequently detected using a 

colorimetric technique.  The exact mechanism is still unclear, but it is hypothesized that 

free radicals attach irreversibly to the amino end terminus of the albumin protein, creating 

a modified albumin moiety.  Briefly, the assay utilizes an aqueous cobalt chloride solution, 

with cobalt typically able to bind to the amino terminus of serum albumin (which normally 
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binds and transports transition metals like cobalt).  However, under conditions of acute 

cardiac ischemia and the formation of the modified albumin moiety, the cobalt can not 

bind to the n-terminus of albumin, and the resulting solution will have an intense blue 

color (as cobalt will instead bind with the test reagent dithiothreitol); which is measurable 

using a spectrophotometer.  A spectrometer can be found used in a routine chemistry 

analyzer typically found in clinical laboratories. 

Several IMA method conditions are important to list: the avoidance of sample 

collection using chelators (e.g. EDTA) as it would interfere with the analysis by binding to 

divalent cations (e.g. calcium, cobalt, magnesium), and to analyze the sample within 2.5 

hrs of the blood draw (unless stored frozen at -20°C).  Currently, there are clinical 

chemistry platforms for this analysis with on-going investigations on the potential use of 

immunoassay techniques.  Although this biomarker has been cleared by the FDA for use, 

several clinical studies have reported the test to have significant false positive results (e.g. 

increased IMA values may be found in patients with cancer, liver disease, brain ischemia, 

end-stage renal disease, and infections [Apple et al., 2005; Asian D. et al., 2005; Wu, 

2003]) and the analysis cost is fairly high (2006 US Medicaid reimbursement cost was 

~$47 per test).  As the diagnostic predictive accuracy of using IMA results alone is <50% 

[Sinha et al, 2003, Bagavan et al., 2003], it is important to mention that the FDA clearance 

of the IMA test was based on its use in conjunction with two other acute MI diagnostic 

tests (e.g. electrocardiogram (ECG) and cardiac troponin (e.g. cTnI)), which significantly 

increased the overall patient diagnostic accuracy. 
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Free fatty acids (FFA) are typically found in serum bound to albumin with a small 

amount typically found in the unbound form (FFAu, free).  However, under conditions of 

cardiac ischemia, the levels of FFAu are found elevated, with the exact understanding of 

why (mechanism-of-action) the FFAu is found elevated remaining unclear.  The FFAu 

analysis consists of the binding the unbound FFA to a protein labeled with a fluorescent 

tag, and subsequent measurement using a fluorometer.  It was recommended that 

additional clinical evaluations were necessary to further evaluate this candidate biomarker 

[Apple et al., 2005]. 

1.5 Past Research on Inosine and Hypoxanthine 

Inosine and hypoxanthine are found in human plasma at low basal concentrations 

(inosine 0.75-1.49 µM, hypoxanthine 1.47-2.94 µM) normally resulting from purine 

metabolism [Feng et al., 2000].  Past research has been performed evaluating inosine and 

hypoxanthine in humans to explore their possible roles in response to ischemia and to also 

determine what role inosine may have as an immunosuppressant.  Several research groups 

have published articles evaluating nucleotide breakdown products in blood during 

ischemic cardiac events (e.g. pacing induced angina, acute MI) and utilized HPLC test 

methods for analysis. 

For example, one group studied the role of xanthine oxidase in purine metabolism 

in ischemic humans [Kock et al., 2003].  They evaluated components such as 

hypoxanthine, xanthine and uric acid, but these authors did not measure inosine and 

reported insignificant differences in hypoxanthine concentrations (mean [µM], SD) 

between normal male individuals (11.9 µM, 4.1), and patients with MI (16.2 µM, 7.1) and 
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other ischemic diseases (e.g. angina pectoris, 11.9 µM, 5.0).  Our research in Chapter 4 

(Section 4.4) focused on addressing the differences in hypoxanthine results from our 

experiments using plasma (lithium heparin) and Kock’s group; which used serum with gel 

(SST) for their experiments. 

Another group studied normal volunteers and patients with documented ischemic 

heart disease; utilized an atrial pacing stress test and reported elevated levels of 

hypoxanthine using HPLC, but insignificant levels of adenosine, inosine and xanthine 

[Harmsen et al., 1981].  While these authors evaluated cardiac ischemic patients and found 

hypoxanthine concentrations to be elevated, they also reported insignificant levels of 

inosine (hypoxanthine precursor); which our Chapter 4 research reports significant 

concentrations of both hypoxanthine and inosine from our study patients.  The differences 

in inosine results may be explained by differences in the cardiac patient types.  Harmsen’s 

group used ischemic heart disease patients and performed the atrial pacing stress test, 

which may end after a brief period of time (e.g. 20-30 min).  This is somewhat different 

than what our cardiac patient samples represent; which were all from a local hospital 

emergency department’s group of non-traumatic chest pain patients.  These patients, which 

may have potential acute cardiac ischemia, had reported non-traumatic chest pain that may 

have been occurring for many hours (e.g. 2 to >10 hrs.), thus allowing concentrations of 

the ATP catabolic by-products (e.g. inosine, hypoxanthine) to elevate in the blood stream. 

Toguzov’s group reported a rise in purine metabolic end products in patients with 

angina and MI [Toguzov et al., 1989].  Their overall conclusion was that plasma 

concentrations of xanthine and uric acid were better indicators of the severity of cardiac 
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ischemia than were inosine and hypoxanthine.  Since xanthine and uric acid can both be 

elevated by other patient medical conditions (e.g. elevated xanthine with xanthine oxidase 

deficiency and elevated levels of uric acid with gout); these two substances may have false 

positives associated with their use as potential cardiac biomarkers. 

Although other research groups have worked with patients with cardiac disease 

(e.g. ischemia, acute MI, angina), there have been no reported studies on nucleotide 

catabolic by-products in plasma from patients (hospital emergency department) presenting 

with non-traumatic chest pain and potential acute cardiac ischemia, nor have any groups 

published a simple, rapid and sensitive test method (goal of <10 min and for clinical 

laboratory) for nucleotide catabolic components inosine and hypoxanthine in plasma. 

Animal research in the area of cardiac ischemia has also been performed with 

publications demonstrating inosine and hypoxanthine cardiac efflux utilizing experiments 

with animal models such as the dog and pig [Jennings et al., 1981; Backstrom et al., 2003], 

with one group using the mouse model and adenosine metabolism inhibitors to study the 

mechanism underlying inosine cardio protection [Peart et al., 2001].  Jennings et al. used 

the dog (healthy mongrel) model for their experiments.  In brief, these investigators 

performed in-vitro (excised heart) and in-vivo experiments, inducing ischemia and then 

evaluating the eluted nucleotides and their by-products (e.g. inosine, hypoxanthine).  They 

concluded that when inducing cardiac ischemia on in-vitro (total ischemia) and in-vivo 

(severe ischemia) heart tissue, that elevated levels of inosine and hypoxanthine were 

detected (after 15 min for in-vivo, after 60 min for in-vitro).  Peart et al. used isolated 

mouse hearts to evaluate adenosine metabolism inhibitors during periods of cardiac 



 46

ischemia.  Their conclusion was that adenosine deaminase and kinase inhibition (via 

enzyme inhibitors) provided cardioprotection (from reducing the xanthine/xanthine oxidase 

reaction and the generation of damaging free radicals).  Although their research goal 

(enzyme inhibitor evaluations using wild type C57/BL6 and transgenic mice) was 

somewhat different than our animal model research goal (cardiac ischemia marker proof of 

concept using ICR heterogeneous mice), both groups used isolated mouse hearts for the 

experiments.  To meet the goal of cardiac ischemia marker proof of concept, the isolated 

mouse heart tissue represented less potential confounding results (e.g. clean matrix from 

Krebs perfusate and removal of body compensations to ischemia) plus the mouse is easy to 

use and relatively inexpensive to purchase/maintain. 

Backstrom et al. used the pig model for their experiments, with microdialysis 

catheterization at several different blood vessel sites (e.g. great cardiac vein, pulmonary 

artery), and then used arterial occlusion to induce cardiac ischemia for various times (0, 10, 

15 and 60 min).  They reported significant dialysate concentrations of inosine and 

hypoxanthine at ischemic time points of 15 and 60 min relative to baseline concentrations 

(ischemic time point 0 min), and concluded that there was a graded outflow of amino acids 

and purines in response to ischemic conditions. 

1.6 Research Hypothesis and Significance 

The research hypothesis is that during periods of acute cardiac ischemia in patients 

presenting with non-traumatic chest pain (hospital emergency department), plasma 

concentrations of inosine (hypoxanthine precursor) and hypoxanthine would be 

significantly elevated above their normally low endogenous plasma concentrations, and 
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potentially becoming candidate biomarkers indicative of the pre-necrotic acute cardiac 

ischemic event.  As acute cardiac ischemia is an event prior to potential acute myocardial 

infarction, the affected heart tissue in the ischemic area is still functional and not yet 

necrotic, as are tissue from an acute myocardial infarction (AMI). 

The current biomarkers indicative of AMI are relatively large protein components 

(e.g. myoglobin, CK-MB, and troponins with each larger than 10,000 Da) which are 

released from necrotic heart tissue.  However, inosine and hypoxanthine; which are ATP 

catabolic by-products and small polar substances (MW inosine 268 Da, MW hypoxanthine 

136 Da), are transported by passive diffusion from affected heart tissue into the 

bloodstream.  Since an acute cardiac ischemic event occurs prior to potential AMI, it is 

hypothesized that the concentrations of inosine and hypoxanthine should appear elevated 

in the bloodstream prior to elevated concentrations of protein biomarkers indicative of 

AMI (which are detected several hours after the AMI event). 

The significance of this research would be the identification of potential candidate 

biomarker(s) of acute cardiac ischemia and the development of a rapid analysis (<10 min) 

to use for the biomarker measurement.  Ideally, EMS personnel would benefit from this 

biomarker and rapid test method to guide in their diagnostic and treatment steps for non-

traumatic chest pain patients, as there are more than ten medical conditions other than 

acute MI that may cause non-traumatic chest pain (e.g. anxiety attack, acid reflux, angina).  

However, one limitation of using elevated concentrations of inosine and hypoxanthine as a 

biomarker of acute cardiac ischemia is these biomarkers may not differentiate a patient 
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experiencing acute cardiac ischemia prior to AMI, or experiencing cardiac angina without 

AMI. 

1.7 Overall Research Experimental Design 

The research is divided into three study phases, with each study phase being 

completed prior to beginning the next (i.e. each subsequent study phase builds from the 

prior study phase).  The study phases are briefly described below with a general outline of 

all three phases listed afterwards. 

Phase I (Chapter 2) study has the overall goal of comparing control and ischemic 

isolated mouse hearts to identify potential biomarkers of acute cardiac ischemia.  HPLC 

methodologies (DAD and MS detection) will be developed and used for all sample 

analysis from Phase I experiments.  As aspirin (ASA) is currently used for human patients 

suspected of undergoing acute myocardial infarction (a condition that may occur after an 

acute cardiac ischemic event), it will be investigated (Chapter 3).  Since aspirin is rapidly 

metabolized to salicylic acid (SA) in the body; SA will be investigated and used for the 

additional isolated mouse heart experiments undergoing ischemic conditions.  The goal is 

to determine the effect of SA on the biomarkers from Chapter 2 experiments. 

Phase II (Chapter 4) study has the goal of evaluating blood samples to determine if 

the biomarker identified in Chapter 2 is present in human plasma and then measure the 

concentrations.  HPLC methodology (UV detection) will be used for all sample analysis in 

Phase II studies.  IRB approval will be obtained for the use of blood samples represented 

healthy normal individuals and non-traumatic chest pain patients (from a local hospital 

emergency department).  Additional experiments will be performed using different types of 
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sample collection additives (e.g. serum separator tube (SST), matched sets of heparin 

plasma and SST).  The goal is to determine if the SST additive (e.g. gel) causes potential 

artifacts in biomarker concentration and state the preferred blood sample collection 

additive for any future work on the potential biomarkers. 

Phase III (Chapter 5) study has the overall goal of developing a rapid and simple 

screening assay (i.e. potential diagnostic tool) to use in a clinical environment.  A 

microplate luminometer will be purchased, setup and utilized for plasma (lithium heparin) 

analysis.  Evaluations of enzyme (e.g. xanthine oxidase, purine nucleoside phosphorylase) 

concentration and incubation times will be performed to optimize assay conditions and 

achieve a rapid analysis time.  The screening assay will be tested on plasma from healthy 

normal individuals and cardiac patients with acute myocardial infarction (as defined by 

elevated levels of cardiac troponin I).  The goal is to determine if potential biomarker 

concentrations are significantly different between these two groups (normal subjects versus 

acute MI patients). 

Each of the three phases of studies can also be listed as follows: 

Phase I - Animal studies to identify potential biomarkers of acute cardiac ischemia 

and demonstrate biomarker proof-of-concept 

• Evaluate potential biomarker(s) from animal model (isolated mouse hearts) 

undergoing 20 min acute global cardiac ischemic conditions.  Evaluate test (ischemic) and 

control animal perfusate samples (n=6 each group) using HPLC methodology. 

• Evaluate effects of salicylic acid (aspirin metabolite) in Krebs buffer solution on 

the potential biomarker(s) levels, as aspirin (platelet inhibitor) is currently used for initial 
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treatment on patients presenting with non-traumatic chest pain and potential acute 

myocardial infarction. 

• Develop quantitative HPLC-DAD (diode array detection) test method for 

evaluation of Krebs perfusate samples from the animal experiments.  Utilize LC-MS 

method for biomarker component identification. 

• Calculate total biomarker efflux (area under the curve, AUC) and utilize statistics 

(e.g. t-test, ANOVA) for data analysis on control and test group results. 

Phase II - Human plasma evaluation for identified biomarker(s) from Phase I studies 

• Obtain human plasma samples (n=20 each group) from emergency department 

(ED) non-traumatic chest pain patients and healthy individuals (controls, non-symptomatic 

for acute cardiac ischemia) following institutional review board (IRB) and hospital 

departmental approvals. 

• Develop and validate HPLC-UV method for quantitative evaluation of inosine and 

hypoxanthine in human plasma. 

• Statistically evaluate HPLC plasma results using parametric techniques (e.g. t-test) 

using α=0.05 with p<0.05 demonstrating statistical significance between test and control 

group plasma samples. 

• Evaluate effects of sample collection matrix (e.g. lithium heparin plasma, serum 

separator tube) on levels of inosine and hypoxanthine from human samples. 

Phase III – Develop rapid test method for biomarker(s) from Phase II studies 
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• Develop a rapid, simple, and sensitive plasma luminescence test method (<10 min 

analysis time) for potential use by emergency medical services (EMS) or clinical lab 

environment. 

• Evaluate plasma samples (n=6 each) from healthy individuals and hospital acute 

MI patients (hospital documented elevated cTnT levels).  Compare results statistically 

using t-test and using a calculated biomarker cut-off limit (e.g. 99th percentile). 
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CHAPTER 2. Animal Studies to Demonstrate Proof-of-Concept, “HPLC 
Determination of Inosine, a Potential Biomarker for Initial Cardiac 

Ischemia using Isolated Mouse Hearts” 
 

 

2.1 Introduction 
 

In this chapter of research, animal studies were performed to identify potential 

biomarker(s) of acute cardiac ischemia and to demonstrate the potential biomarker(s) 

proof-of-concept (via mechanism of action).  The rationale of using isolated mouse hearts 

for these experiments was to eliminate potential confounding factors (e.g. body 

metabolism, body compensatory mechanisms) that may occur with in-vivo type 

experiments.  Ischemia is defined as a reduced blood flow and results in reduced oxygen 

supply to the affected site (tissue).  As a consequence to the lack of oxygen in heart muscle 

tissue, adenosine triphosphate (ATP) production in the cardiac cell’s mitochondria would 

be limited to anaerobic production. 

Thus, it is important to understand how the heart utilizes ATP, a high energy 

phosphate molecule, to perform its circulatory function.  The heart is highly energy-

dependent on ATP, which is made in cardiac cellular mitochondria by either aerobic 

(oxidative phosphorylation via electron transport chain) or anaerobic (glycolysis) 

processes.  The aerobic process is heavily oxygen dependent and generates approximately 

80% of cardiac cellular ATP.  The anaerobic process is independent of oxygen and 

produces approximately 20% of the cardiac cellular ATP; with lactic acid as a by-product. 
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For production of large quantities of ATP, human cardiac cells have an abundance 

of mitochondria which comprise approximately 40-50% of the cardiac cellular mass.  

When cardiac tissue is subjected to periods of constant oxidative stress (e.g. cardiac 

ischemia), insufficient oxygen is available for cardiac mitochondria to aerobically 

synthesize the ATP required for normal cardiac function.  This causes a cellular 

accumulation of ATP metabolic by-products (e.g. adenosine diphosphate (ADP), 

adenosine monophosphate (AMP)) and activates normally dormant enzymes (e.g. 5´-

nucleotidase, adenosine deaminase, purine nucleoside phosphorylase and xanthine oxidase) 

to catabolize the ATP by-products to substances such as adenosine, inosine, hypoxanthine, 

xanthine and uric acid for cardiac cellular elimination [Abd-Elfattah et al., 2001].  In 

human cardiac tissue, another source of ATP metabolic by-products is through metabolism 

of diadenosine polyphosphates, which are released from cardiac-specific secretory granules 

during periods of cardiac metabolic or ischemic stress to provide cellular protective 

functions [Luo et al., 2004]. 

Inosine (9-β-D-ribofuranosylhypoxanthine) is an endogenous purine nucleoside 

normally found in the human body as a degradation component of purine metabolism.  In 

human plasma, inosine is metabolized in red blood cells with a reported half-life of <5 min 

with endogenous plasma levels found in trace amounts (e.g. low ng/mL) [Viegas et.al., 

2000].  In humans, nature has provided a cellular biochemical mechanism to help conserve 

energy in producing the required large quantities of ATP for cardiac cellular use (called 

salvage pathway), which can convert cellular inosine back to ATP via several enzymatic 

steps; thus recycling cellular inosine [Nelson et al., 2000].  However, in periods of constant 
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cardiac oxidative stress (e.g. 20 min), cardiac cells buildup significant amounts of ATP 

metabolic by-products, which activate normally dormant enzymes to catabolize ATP by-

products, which then become systemically available prior to their elimination. 

The research hypothesis is that prior to extra-cellular biomarkers (e.g. free radical 

modified serum albumin) appearing in the bloodstream from cardiac ischemic events, 

plasma inosine levels should be elevated above normally low endogenous levels, thus 

becoming a useful biomarker of pre-necrotic acute cardiac ischemia.  Adenosine, another 

nucleoside metabolic by-product of ATP catabolism is metabolized by red blood cells and 

has a very short plasma half-life (e.g. ~15 sec); thus making it more difficult to 

quantitatively measure in plasma [Mei et.al., 1996].  The three other metabolic by-products 

(xanthine, hypoxanthine and uric acid) are normally found at higher levels in the plasma, 

but would lack the necessary specificity due to potential contributions from other human 

disease state conditions (e.g. plasma uric acid levels elevated in gout; plasma xanthine 

levels elevated in xanthine oxidase deficient individuals). 

The ICR (Institute of Cancer Research) outbred mouse [Dohm, 2004] was used as 

the animal model for all isolated heart experiments and utilized a Langendorff apparatus 

[Xi et al., 1998].  For sample analysis, a developed analytical method utilized a high 

performance liquid chromatographic diode array detection (HPLC-DAD) for the detection 

and quantification of inosine in Krebs-Henseleit (Krebs) buffer solution.  A Synergy C18 

column (hydrophobic/hydrophilic reversed phased retention) at a flow rate of 0.6 ml/min 

with an aqueous mobile phase of trifluoroacetic acid (0.05% TFA in deionized water pH 

2.2, v/v) and methanol gradient was used for component separation.  The assay detection 
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limit for inosine in Krebs buffer solution was 500 ng/mL using a 100 μL neat injection.  

The HPLC results were used to determine total cardiac effluxed inosine (AUC) into the 

Krebs effluent for each mouse during acute global cardiac ischemia (oxidative stress) and 

compared to percent cardiac ventricular functional recovery to determine if a relationship 

exists amongst this cardiovascular parameter during periods of acute global cardiac 

ischemia. 

2.2 Experimental 

2.2.1 Chemicals, Mobile Phase and Krebs Buffer Solution 

 Hypoxanthine and xanthine were purchased from Acros Organics (Fair Lawn, NJ, 

USA). 2,3-dihydroxybenzoic acid (DHBA), 2,5-dihydroxybenzoic acid, salicylic acid 

(SA), adensosine, inosine and uric acid were purchased from Sigma-Aldrich (St. Louis, 

MO, USA).  Sodium chloride, sodium bicarbonate, potassium chloride, magnesium sulfate, 

monobasic potassium dihydrogen phosphate, dextrose and calcium chloride were used to 

prepare the Krebs buffer solution and all were purchased from Sigma-Aldrich.  All 

purchased chemicals were ACS reagent grade or better.  The Krebs buffer solution [118.5 

mM NaCl, 25.0 mM NaHCO3, 11.1 mM C6H6O6, 4.7 mM KCl, 1.2 mM KH2PO4, 1.2 mM 

MgSO4 and 2.5 mM CaCl2] was prepared in ultrapure deionized water with pH 7.4 and 

95%O2:5%CO2.  For mobile phase preparation, trifluoroacetic acid (TFA) was reagent 

grade and methanol was Optima HPLC grade and both were purchased from Fisher 

Scientific (Fair Lawn, NJ, USA).  Ultrapure distilled and deionized water (18 MΩ-cm) 

used for HPLC work was prepared in-house using Purelab Ultra deionized water system 

(US Filter, Lowell, MA, USA) and filtered prior to use. 
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2.2.2 Preparation of Standard Solutions 

 Stock standards of 93.6 µM adenosine, 93.2 µM inosine, 183.7 µM hypoxanthine, 

164.4 µM xanthine and 148.7 µM uric acid were prepared in deionized water and stored at 

4°C.  Working standards (1:10 dilution of stock standard) of each component were 

prepared in Krebs buffer solution and maintained at -20°C along with the mouse Krebs 

buffer eluant samples.  The working standards stored at -20°C were stable for at least 6 

months. 

2.2.3 HPLC-UV and HPLC-MS Equipment Set Points 
 

For inosine quantification and diode array spectral purity, the HPLC equipment 

consisted of Agilent Model 1100 Quaternary HPLC-DAD and Chemstation software (Palo 

Alto, CA, USA).  The DAD was set to acquire complete UV spectrum for component 

specificity with 240 nm used for quantification of inosine and the other ATP metabolic by-

products.  For inosine confirmation, LC/MS was used and the equipment consisted of a 

Shimadzu LCMS-2010A HPLC coupled to a single quadrapole mass spectrometer using 

LCMS Solutions software (Columbia, MD, USA).  The HPLC-MS conditions consisted of 

using ESI with the following instrument set points (heating block at 300°C, nebulizer at 4 

L/min nitrogen, interface voltage at 2 kV) and full scan acquisition using positive ion 

mode. 

The analytical column for both HPLC-DAD and HPLC-MS analysis was a 

Synergi™ Hydro-RP C18, 150 mm x 3 mm I.D., 4 μm packing, 80 Å (Phenomenex®, 

Torrance, CA, USA).  The C18 guard column was a 30 mm x 4.6 mm I.D., 40-50 μm 

pellicular packing (Alltech, Deerfield, IL, USA).  The mobile phase consisted of aqueous 
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trifluoroacetic acid (0.05% TFA in deionized water, v/v, and pH 2.2) and methanol 

gradient.  The mobile phase gradient was linear with time course as follows (95:5 0.05% 

TFA in deionized water: methanol, v/v at 0 min; 70:30 0.05% TFA in deionized water: 

methanol, v/v at 12 min; 10:90 0.05% TFA in deionized water: methanol, v/v at 13 min 

and held 3 min, and 95:5 0.05% TFA in deionized water: methanol, v/v at 17 min). 

The mobile phase was degassed automatically using an Agilent 1100 membrane 

degasser with a flow-rate of 0.6 ml/min.  An injection volume of 100 μl of the Krebs buffer 

eluant was made using an autosampler.  Typical HPLC operating pressure was 

approximately 150 bar with ambient column oven temperature and 345 kPa back-pressure 

regulator (SSI, State College, PA, USA) to prevent mobile phase outgassing in the 

detector. 

2.2.4 ICR Mouse Experiment Conditions 

ICR mice were used for all isolated mouse heart experiments with morphometric 

characteristics and baseline cardiac function of the adult mice (ICR strain) provided in 

Table 4.  The mice were anaesthetized; hearts surgically removed and isolated using the 

Langendorff apparatus (Figure 2).  Global cardiac oxidative stress was accomplished by 

adjusting the Krebs buffered solution to zero flow through the heart for 20 min.  Upon 

heart reperfusion, approximately 1.5 mL samples of Krebs buffered eluant from the 

isolated mouse hearts were collected at predetermined time-points (0, 1, 3, 5, 10 and 20 

min) in plastic bullet centrifuge tubes and frozen at -20°C until HPLC-DAD analysis. 

 To evaluate the effects of oxidative stress on the mouse heart, established 

cardiovascular measurements (e.g. ventricular functional recovery) were performed on 
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Table 4. Morphometric characteristics and baseline cardiac function of the adult mice (ICR 

strain). 

________________________________________________________________________ 
     Control  Ischemia-Reperfusion Test 
          (n = 6)               (n = 6) 
________________________________________________________________________ 
 
Body Weight (g)   42.2 ± 1.3   38.7 ± 2.1 
Heart Wet Weight (mg)   258 ± 6    242 ± 14 
Heart Rate (bpm)    368 ± 23    345 ± 23 
Developed Force (g)   0.81 ± 0.19   1.12 ± 0.12 
Rate-Force Product (g x bpm)   308 ± 80    372 ± 49 
Coronary Flow (ml/min)    2.3 ± 0.2     1.7 ± 0.1 
________________________________________________________________________ 
 
Values are mean ± SEM.  No significant difference (P>0.05) between the groups was 
found for the listed parameters, except coronary flow. 
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Figure 2. Modified Landendorff apparatus used for all animal (mouse) experiments.  The 

suspended isolated heart has Krebs buffer solution perfusing through it to provide 

sufficient nutrients (e.g. buffer salts, glucose, oxygen etc.) for experiments. 

Experiments Using
Modified Langendorff Apparatus 

Air temperature 
measurement 

Krebs buffer
(constant temp)

Syringe pump 
for admin drugs

Heart tensioner
device

Suspended
mouse heart,
viable for
several hours.

Courtesy of Dr. Lei Xi, VCU Cardiology



 60

both control (non-ischemic conditions) and test (ischemic conditions) animals (n=6 for 

each group).  Our methodology for evaluating the isolated perfused mouse heart has been 

previously described [Xi et al., 1998]. In brief, animals are anesthetized with an 

intraperitoneal injection of pentobarbital sodium ([100 mg/kg] with 33 IU heparin added).  

The heart was removed and immediately placed in ice-cold Krebs buffer.  The aorta was 

cannulated within 3 min onto the Langendorff perfusion system and the heart was perfused 

in a retrograde fashion at a constant pressure of 55 mmHg with Krebs buffer gassed with 

95%O2 and 5%CO2.  The pH of the buffer and the heart temperature were maintained at 

7.35-7.50 and 37±0.5ºC, respectively.  A force-displacement transducer (Grass, FT03) was 

attached to the apex via a metal hook/surgical thread/pulley system to continuously record 

and measure ventricular contractile force and heart rate.  For each heart the resting tension 

was set at ~0.3 g in the beginning of the experiment. 

The protocol for the test group consisted of 30 min of stabilization, 20 min of zero-

flow global ischemia, and 30 min of reperfusion [Xi et al., 1998].  Time-matched normoxic 

perfusion was carried out for the control group.  At the end of each experiment, the heart 

was removed from the Langendorff system, quickly weighed and stored at -20°C. 

2.2.5 Sample Preparation, Stability, and Instrument Precision Evaluation 

 Prior to HPLC analysis, perfusate samples frozen at -20°C were thawed to ambient 

temperature, mixed thoroughly by inversion and transferred to plastic autosampler vials for 

subsequent direct injection into the HPLC-DAD system.  To evaluate sample stability in 

the perfusate solution and instrument precision; prepared samples in autosampler vials 
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were stored at ambient lab temperature overnight and re-injected (n=3 times) into the 

HPLC for analysis. 

2.2.6 Component Retention Times, Inosine Calibration and AUC Calculations 

 During HPLC method development and validation, standards of adenosine (3.7 to 

93.6 µM), inosine (3.7 to 93.2 µM), hypoxanthine (7.3 to 183.7 µM), xanthine (6.6 to 

164.4 µM) and uric acid (5.9 to 148.7 µM) were prepared in Krebs buffer solution.  

Standard curve linearity (non-weighted) of all components was acceptable with all 

correlation coefficients >0.995.  During subsequent analytical runs, a single point 

calibration standard mixture (9.3 µM inosine, 18.4 µM hypoxanthine, 9.4 µM adenosine, 

16.4 µM xanthine and 14.9 µM uric acid) was prepared in Krebs buffer solution and was 

used for identifying component retention times and quantification of inosine found in test 

samples.  Using UV detection at 240 nm, component peak area and external 

standardization were used for inosine computations.  For determining inosine AUC on test 

samples, the trapezoidal rule computation using Excel software was performed on inosine 

sample values from 0 to 20 min. 

2.3 Results and Discussion 

2.3.1 Additional Evaluation for Hydroxyl (·OH) Free Radicals 

 During periods of cardiac oxidative stress (e.g. acute myocardial infarction), the 

heart is deprived of the oxygen needed for ATP synthesis.  In the absence of oxygen 

dormant enzymes activate whereby ATP is sequentially converted to ADP, AMP, 

adenosine, inosine and hypoxanthine.  Upon reperfusion of the heart with oxygenated 

blood or oxygenated Krebs solution, additional cellular enzymatic conversions transpire 
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with xanthine oxidase converting hypoxanthine to xanthine and uric acid.  A metabolic by-

product of xanthine oxidase is the formation of hydrogen peroxide (H2O2) which is 

normally converted by glutathione peroxidase to H2O.  However, in the presence of Fe2+, 

H2O2 may be converted to a hydroxyl free radical (·OH) via the Fenton and Haber-Weiss 

reactions (Figure 3) [IUPAC, 1997]. 

 The (·OH) is a known potent reactive oxygen species (ROS) and can cause damage 

to cellular components (e.g. lipids, proteins, nucleic acids) [Tardif and Bourassa 2000].  To 

investigate the formation of ROS, one research objective was to evaluate and estimate the 

amount of (·OH) generated from 20 min of global cardiac ischemia using isolated mouse 

hearts.  In several of the initial experiments, SA [1 mM] was fortified in the Krebs buffer 

solution (pH adjusted 7.4) to react with (·OH) and form the reaction products of 2,3 and 

2,5-DHBA isomers [Onodera et al., 1991; Coudray et al., 2000]. 

The HPLC-DAD conditions that were used for inosine determination resolved 

prepared standards [13 ng/mL or 86 nM] of the 2,3 and 2,5-DHBA isomers from other 

Krebs eluant sample components (e.g. SA, adenosine, inosine, hypoxanthine etc.).  

However, in our experiments performed using SA, we did not observe either the 2,3 or 2,5-

DHBA isomers in the sample chromatograms from mouse hearts that were subjected to 

global cardiac ischemia.  It is possible that the initial level of SA [1 mM] added to the 

Krebs buffer solution increased the total solute concentration to a level, which reduced the 

solubility of 2,3 and 2,5-DHBA isomers and therefore made each analytically undetectable.  

Lower concentrations of SA [e.g. ≤ 1 µM] may in theory resolve this aspect of ROS 

generation from mouse acute global cardiac ischemia. 
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Figure 3. Schematic drawing of cardiac cellular ATP catabolism due to oxidative stress 

and potential oxygen reperfusion injury due to (·OH) free radical generation. 
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2.3.2 HPLC-DAD and HPLC-MS Identification 

 The HPLC-DAD method was used for determining all of the following components 

(adenosine, inosine, hypoxanthine, xanthine, uric acid, 2,3-DHBA and 2,5-DHBA 

isomers).  The mobile phase aqueous component 0.05% TFA in deionized water was 

chosen as pH ~2.3 provided good peak shapes on all components and a low pH was 

necessary to reduce peak tailing on the acidic components (e.g. 2,5-DHBA has pKa ≈ 2.9).  

The Synergi™ Hydro-RP C18 (polar endcapped) and Synergi™ Polar-RP C18 (ether-linked 

phenyl) columns of identical dimensions were evaluated for use.  While both columns 

worked well for inosine and polar components (e.g. adenosine), the Synergi™ Hydro-RP 

C18 was selected for overall analysis as it provided good component peak shape and 

sufficient resolution of all components. 

 Other components evaluated using this method have HPLC retention times as 

follows (uric acid 2.8 min, hypoxanthine 3.9 min, xanthine 4.2 min, adenosine 5.7 min, 

CK-MB 8.2 min, 2,3-DHBA 8.4 min, 2,5-DHBA 10.2 min, myoglobin 14.1 min, atrial 

natriuretic peptide 14.5 min, brain natriuretic peptide 15.0 min and salicylic acid 15.4 

min). Both cardiac troponin I and troponin T were not detected using this HPLC method.  

An HPLC-DAD chromatograms overlay from a mouse subjected to 20 min acute global 

cardiac ischemia and a control mouse (non-ischemia) are presented in Figure 4 with 

inosine elution at 5.9 min. 

 To evaluate perfusate sample stability, the prepared samples were initially injected 

and analyzed by HPLC-DAD.  The samples were subsequently stored overnight on the 

autosampler at ambient lab temperature and re-injected (n=3 times) to evaluate both for 
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Figure 4. HPLC-DAD chromatograms overlay of control (025-2501.D) and 20 min global 

cardiac ischemia (026-2601.D) mouse perfusate samples.  Inosine (RT 5.9 min) and 

HPLC-ESI/MS mass spectrum identifying inosine (MW 268 Da) as a potential early 

biomarker of global cardiac ischemia is demonstrated in the ischemic mouse heart 

perfusate.  The chromatogram overlay between control and 20 min global cardiac ischemia 

also demonstrates consistent gradient repeatability. 
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changes in component levels due to possible synthesis or degradation reactions from 

potential enzymes eluted in the perfusate and to evaluate instrument precision.  In all re-

injected perfusate samples, component levels remained constant (≤ 4% RSD) indicating 

stability overnight at ambient temperature and the absence of appreciable levels of 

nucleoside and purine converting enzymes in the perfusate. 

2.3.3 HPLC-MS Identification of Inosine as Potential Initial Ischemia Biomarker 

 An HPLC-MS was used to identify inosine at retention time 5.9 min in samples 

from test mice subjected to oxidative stress.  The HPLC analytical column, mobile phase 

gradient and flow rate were identical to that used in the HPLC-DAD method.  The mass 

spectrum for inosine (MW 268 Da) is presented in Figure 4.  It was acquired using the MS 

positive ion mode, which provided a good mass spectral quality match against a prepared 

standard of inosine in Krebs buffer solution.  The full scan spectrum was achieved using 

up-front collision induced dissociation (CID) and nitrogen as the collision gas.  The mass 

spectrum base peak (137 Da) represents the cleavage of the ribose entity from inosine 

leaving a protonated hypoxanthine (MW 136 Da) (Figure 5). 

2.3.4 Evaluation of Inosine AUC and Other Cardiovascular Parameters 

 Initially, the focus was on identifying cardiac protein or peptide biomarkers (e.g. 

ANP, BNP) that may be released from ischemic myocardium; however in comparison with 

non-ischemic mouse hearts only inosine (22 to 69 fold) and xanthine-like products (e.g. 

hypoxanthine (>7 fold), xanthine (~3 fold), uric acid (~3 fold)) were found at higher levels 

in globally ischemic mouse hearts.  Figure 6 is a profile of mouse hearts subjected to 
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Figure 5. HPLC-ESI/MS positive ionization mode of inosine (MW 268 Da) with 

fragmentation to hypoxanthine (MW 136 Da). 
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Figure 6.  Profile of the mean (±SD) ATP catabolic by-products detected in Krebs solution 

versus reperfusion time after 20 min mouse global cardiac ischemia (n=6 mice).  Control 

mice (n=6, non-ischemia) are not plotted with undetectable levels of ATP catabolic by-

products in all sample time points (0, 1, 3, 5, 10 and 20 min). 
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oxidative stress with individual ATP degradation by-product components (mean ± SD) 

plotted against Krebs buffer reperfusion time.  As can be seen in Figure 6, inosine was the 

component which had the highest response with detectable component amounts found at 

low µM levels, after 20 min global cardiac ischemia (n=6 mice).  The control mice (n=6, 

non-ischemia) are not shown, as there were undetectable levels of all ATP catabolic by-

products in each sample time point (0, 1, 3, 5, 10 and 20 min). 

 Cardiovascular parameter (e.g. percent cardiac ventricular functional recovery) was 

measured and reported with the calculated inosine AUC results (Table 5).  As can be seen 

from Table 5, inosine efflux was present in test mouse heart perfusate samples which were 

subjected to oxidative stress and was not detected in control mouse heart perfusate 

samples.  However, for both controls and test mice, the percent cardiac functional recovery 

ranged from 39 to 92% with the lowest measured cardiac functional recovery being in test 

mouse hearts which had the largest amount of inosine present in the Krebs buffer solution 

(e.g. test mouse with 2, 469 ng min ml-1 AUC inosine effluxed with 39% cardiac 

functional recovery).  This may indicate that mouse hearts which are injured to a greater 

degree from the effects of oxidative stress efflux more inosine from ATP by- product 

degradation.  Further studies with larger test and control mouse sample size (e.g. n=10) 

would be necessary to statistically interpret this observation. 

2.4 Conclusion 

 The preliminary results suggest that the concentration of inosine found in test 

animals subjected to cardiac oxidative stress may serve as a potential biomarker indicative 
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Table 5. Inosine washout and cardiac ventricular functional recovery in Langendorff 

mouse hearts following aerobic perfusion and 20 min global ischemia. 

 

Sample 
Type 

Inosine AUC 0-20 min 
[ng min / mL] 

% Cardiac 
Functional 
Recovery 

Control N.D. 70 
Control N.D. 72 
Control N.D. 74 
Control N.D. 82 
Control N.D. 81 
Control N.D. 64 

Test 653 92 
Test 962 84 
Test 954 77 
Test 1,003 53 
Test 2,469 39 
Test 2,583 52 
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of early cardiac ischemia.  This can be explained by ischemic myocytes undergoing 

nucleotide purine catabolism in the absence of oxygen with subsequent activation of 

dormant cellular enzymes and generation of degradative breakdown products of ATP.  

Preliminary human studies will need to be undertaken to determine the validity of this 

hypothesis. 

 Additional research from our group will be performed on plasma samples obtained 

from hospital admitted patients suspected of undergoing acute myocardial infarction to 

determine if plasma levels of endogenous inosine are significantly elevated during periods 

of cardiac oxidative stress.  If inosine plasma levels are found to be significantly elevated 

in samples obtained from patients undergoing acute myocardial infarction, inosine should 

be recommended as a potential biomarker for the initial cardiac ischemic event, and may 

be useful in indicating the need for immediate medical treatment, potentially improving 

patient outcome. 
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CHAPTER 3. Animal Studies to Evaluate Salicylic Acid, “Effects of 
Salicylic Acid on Post-Ischemic Ventricular Function and Purine Efflux 

in Isolated Mouse Hearts” 
 
 
 
3.1 Introduction 
 
 Aspirin (acetyl salicylic acid, ASA) is one of the most widely used drugs in the 

world and has been used for many years for its analgesic, anti-pyretic, anti-inflammatory 

and anti-platelet (blood thinning) properties (Vane et al., 2003; Schror, 1997; Evans et al., 

1968).  ASA (160 or 325 mg dose) is routinely administered with other cardiac 

medications as part of initial emergency treatments to patients presenting with chest pain 

and potential acute myocardial infarction (MI) to inhibit platelet aggregation at the site of 

cardiac thrombosis (Feldman et al., 1999; Antman et al., 2004; Abarbanell et al., 2001; 

Kosowsky, 2006).  A 325 mg dose of aspirin can have plasma concentration maximums 

(Cmax) of 67 µM acetyl salicylic acid and 188 µM salicylic acid (Merck 11th Edition, 

1989).  Aspirin is also used chronically by many individuals for other medical conditions, 

with plasma salicylic acid concentrations ranging from 145 to 725 µM (analgesia) and 

1,086 to 2,172 µM (anti-inflammatory) (Moffat et al. 1986). 

 Aspirin’s mechanism of action is well documented with interactions causing 

irreversible inhibition of both cyclooxygenase isoenzymes (COX-1, COX-2) (Smith et al., 

1971; Schror, 1997).  The mechanism for ASA inhibiting platelet aggregation is through 

irreversible acetylation of the COX-1 enzyme which blocks synthesis of thromboxane A2, 
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a platelet aggregator and vasoconstrictor (Vane et al., 2003).  Other reported medical uses 

of ASA require higher blood concentrations (e.g. a rheumatoid arthritis patient may require 

1.5 to 2.5 mM ASA and an anti-inflammatory dose may require sodium salicylate levels of 

0.5 to 5 mM) (Nulton-Persson et al., 2004; Smith et al., 1971).  In humans, ASA is rapidly 

metabolized (half-life ~3-4 hrs) and excreted via phase I metabolism (60% via 

deacetylation to salicylic acid (SA)) and phase II metabolism (~ 40% via conjugated 

products) (Rowland et al., 1968). 

 In addition a recent publication reported inhibitory effects of both ASA and SA on 

rat cardiac mitochondrial respiration (Nulton-Persson et al., 2004).  These authors found 

that ASA and SA both could reduce NADH supply to the electron transport chain in 

isolated rat cardiac mitochondria, thus reducing ATP synthesis (via inhibition of oxidative 

phosphorylation).  They also demonstrated a negative dose-response effect from both ASA 

and SA (0-10 mM concentration range) on cardiac mitochondrial respiration under non-

ischemic conditions.  Other research was performed demonstrating the inhibitory effects of 

ASA and SA on xanthine oxidase, which would inhibit enzymatic conversion of 

hypoxanthine to xanthine and uric acid (Carlin et al., 1985; Masuoka and Kubo, 2003). 

To this context, the present study was designed to further examine the effects of SA 

(0, 0.1 and 1.0 mM) on ATP catabolic by-products (e.g. inosine and hypoxanthine) along 

with an indirect evaluation of purine nucleoside phosphorylase (PNP) enzyme activity 

(indicated by inosine/hypoxanthine conversion ratio).  We hypothesized that higher 

concentrations of SA (e.g. 1.0 mM) coupled with periods of acute cardiac ischemia may 

potentiate the ischemic adverse effects on heart tissue via increased uncoupling of 
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oxidative phosphorylation and subsequently enhanced efflux of ATP catabolic by-products 

such as inosine, which has been proposed in our recent publication (Farthing et al., 2006) 

as a potential biomarker of acute cardiac ischemia.  The morphometric characteristics and 

baseline cardiac function data from controls (non-ischemic and without SA) and test 

(ischemic and without SA) animals from Chapter 2 research were used for statistical 

comparisons to the experimental groups exposed to SA in this chapter of research. 

3.2 Experimental 

3.2.1 Chemicals, Standards and Krebs Buffer Solution 

 All experimental chemicals were purchased and solutions prepared as per our 

recent published work (Farthing et al., 2006).  Briefly, ACS grade or better purity 

hypoxanthine, xanthine, trifluoroacetic acid (TFA) and methanol (Optima) were purchased 

from Acros Organics (Fair Lawn, NJ, USA).  Salicylic acid, adenosine, inosine, uric acid, 

sodium chloride, sodium bicarbonate, potassium chloride, magnesium sulfate, monobasic 

potassium dihydrogen phosphate, dextrose, ethylenediaminetetraacidic acid (EDTA) and 

calcium chloride were all purchased from Sigma-Aldrich (St. Louis, MO, USA). 

 Stock and working standards of adenosine (374.2 µM), inosine (372.8 µM), 

hypoxanthine (734.7 µM), xanthine (657.4 µM) and uric acid (594.8 µM) were prepared in 

deionized water and stored at 4°C as per work (Farthing et al., 2007).  The working 

standards were maintained at -20°C along with the mouse Krebs buffer perfusate samples 

and demonstrated stability for at least 6 months.  The Krebs buffer solution consisted of 

either 0, 0.1 or 1.0 mM SA and 118.5 mM NaCl, 25.0 mM NaHCO3, 11.1 mM C6H6O6, 4.7 

mM KCl, 1.2 mM KH2PO4, 1.2 mM MgSO4, 0.5 mM EDTA and 2.5 mM CaCl2 using in-
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house prepared deionized water (final pH 7.4 and continuously gassed with 

95%O2:5%CO2 during the isolated heart experiments).  For HPLC analysis, deionized 

water (18 MΏ-cm) used was produced and filtered using US Filter Purelab Ultra deionized 

water system (Lowell, MA, USA). 

3.2.2 Langendorff Isolated Mouse Heart Preparation and Experimental Protocols 

 All animal experimental conditions were similar to our published work (Farthing et 

al., 2006; Xi et al., 1998).  Adult male mice (ICR strain) were used for all cardiac ischemia 

experiments with morphometric characteristics, baseline cardiac function, and ANOVA 

results presented in Table 6.  The protocol for Groups II, III, and IV consisted of 30 min of 

stabilization, 20 min of zero-flow global ischemia and 30 min of reperfusion (Figure 7).  

Time-matched normoxic perfusion (for 80 min) was carried out for the Control group and 

Group I.  Briefly, the mice were anaesthetized; hearts quickly isolated and cannulated onto 

a Langendorff apparatus within 3 min.  Following the 30 min of stabilization period, global 

ischemia was accomplished by stopping heart perfusion inflow for 20 min.  Upon heart 

reperfusion, approximately 1.5 mL samples of Krebs buffered perfusate from the isolated 

mouse hearts were collected at predetermined time-points (0, 1, 3, 5, 10 and 20 min) into 

plastic bullet centrifuge tubes and immediately frozen at -20°C.  At the end of each 

experiment, the heart was removed from the Langendorff system and quickly weighed. 

 The present study measured simultaneously both cardiovascular parameters (e.g. 

coronary flow rate, heart rate and cardiac developed force) and efflux of ATP catabolic by-

products (e.g. inosine and hypoxanthine evaluated in Krebs perfusate samples) for each of 

the experimental groups.  The control group consisted of six aerobically perfused hearts 
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Table 6. Morphometric characteristics and baseline cardiac function of the adult mice (ICR 
strain). 
 
_________________________________________________________________________________________         _____________ 
   Control  Group I  Group II  Group III  Group IV 
   (n = 6)   (n = 6)                   (n = 6)    (n = 6)    (n = 6) 
______________________________________________________________________________  ____________________________ 
 
Body Weight (g)  42.2 ± 1.3  37.0 ± 0.9  38.7 ± 2.1  41.5 ± 2.7  36.1 ± 1.3 
Heart Wet Weight (mg) 258 ± 6  243 ± 16  242 ± 14  252 ± 18  258 ± 20 
Heart Rate (bpm)  368 ± 23  340± 26  345 ± 23  368 ± 37  373± 17 
Developed Force (g)  0.81 ± 0.19 1.06 ± 0.27 1.12 ± 0.12 1.09 ± 0.23 0.77 ± 0.16 
Rate-Force Product (g x bpm) 308 ± 80  361 ± 109  372 ± 49  411 ± 107  287 ± 65 
Coronary Flow (ml/min) 2.3 ± 0.2  2.3 ± 0.3  1.7 ± 0.1  2.1 ± 0.2  2.7 ± 0.3 
___________________________________________________________________________________________________________ 
 

Values are mean ± SEM.  No significant difference (P<0.05, one-way ANOVA) between 
the groups were found for the listed parameters. 
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without SA
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Coronary effluent samples  0                                    1   3   5      10           20

Coronary effluent samples  0                                    1   3   5      10           20

 

Figure 7.  Protocol for animal experiments depicting experimental groups, salicylic acid 

(SA) level, ischemic condition and coronary effluent sample time points. 
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which were not subjected to ischemia and used non-SA Krebs buffer (Farthing et al., 

2006).  Group I consisted of six hearts which were not subjected to global cardiac 

ischemia; however the Krebs buffer solution contained 1.0 mM SA to evaluate the effects 

of the highest tested concentration of SA on ATP catabolism and PNP activity.  Group II 

consisted of six hearts which were subjected to global cardiac ischemia with the Krebs 

buffer solution not containing SA to evaluate the effects of ischemic conditions on ATP 

catabolic by-products.  To determine if the effects of SA are dose-dependent in the hearts 

undergoing global cardiac ischemia, Group III consisted of six hearts which were subjected 

to Krebs buffer solution containing 0.1 mM SA and Group IV consisted of six hearts 

subjected to 1.0 mM SA. 

3.2.3 HPLC-UV Conditions and Mobile Phase 

 All instrument conditions were performed as previously reported (Farthing et al., 

2007).  Briefly, the HPLC-UV method used a Phenomenex® Onyx™ monolithic C18 

analytical column (20 cm x 4.6 mm I.D., 130 Å) and Onyx™ C18 guard column (5 cm x 4.6 

mm I.D.) (Torrance CA, USA).  The mobile phase gradient consisted of aqueous 

trifluoroacetic acid (0.1% TFA in deionized water, pH 2.2, v/v) and methanol with time 

course (1 to 20% methanol linear gradient over 10 min).  The mobile phase flow-rate was 

1.0 ml/min with operating pressure of ~84 bar at ambient column temperature.  A 15 µl 

direct injection of the Krebs buffer perfusate sample was made with optimal UV 

wavelength absorption of 250 nm used for inosine and hypoxanthine detection. 
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3.2.4 Data Computation and Statistics 

 The HPLC data acquisition and component computations were performed using 

TotalChrom™ Workstation software (Perkin Elmer™, Norwalk, CT, USA).  Statistics 

utilizing ANOVA to compare the multi-group experimental results was performed using 

MS Excel (Microsoft®, Seattle, WA, USA) and post hoc analysis (Dunnett, Tukey) using 

JMP 6.0 (SAS Institute Inc., Cary, NC, USA) with α=0.05 and P<0.05 demonstrating 

significance.  The Dunnett post hoc analysis was performed to compare each experimental 

test group’s mean result to a control group’s mean result.  In addition, the Tukey post hoc 

analysis was also performed as it compares each group’s mean result to each of the other 

group’s mean result.  However, it should be emphasized that for these non-parametric 

analysis, the small sample size (n=6 each group) for these animal experiments may be a 

limitation when interpreting the results.  Correlation evaluation was performed using 

GraphPad Prism 4 (San Diego, CA, USA).  For determining total effluxed inosine, the area 

under the curve (AUC) was calculated utilizing trapezoidal rule computations and MS 

Excel on HPLC results (0 to 20 min time point perfusate samples). 

3.3 Results and Discussion 

3.3.1 Chromatography and Method Validation 

 Figure 8 shows representative chromatograms for: (A) low standard of 

hypoxanthine (1.8 µM) and inosine (0.9 µM) in deionized water; (B) standard of 

hypoxanthine (14.7 µM, RT ~5.2 min), uric acid (11.9 µM, RT ~5.6 in), xanthine (13.1 

µM, RT ~6.7 min), adenosine (7.5 µM, RT ~10.3 min) and inosine (7.5 µM, RT ~10.5 

min) in deionized water; (C) Group I (no ischemia + 1.0 mM SA) perfusate sample  
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Figure 8. Chromatograms representing (A) low standard of 1.8 µM hypoxanthine (Hypo, 

RT 5.2 min) and 0.9 µM inosine (Ino, RT 10.6 min) in deionized water, (B) standard of 

14.7 µM hypoxanthine, 11.9 µM uric acid (UA, RT 5.6 min), 13.1 µM xanthine (Xan, RT 

6.7 min), 7.5 µM adenosine (Adeno, RT 10.3 min) and 7.5 µM inosine in deionized water, 

(C) Group I mouse perfusate sample (no ischemia and 1.0 mM SA), (D) Group II perfusate 

sample (20 min global ischemia and no SA), (E) Group III mouse perfusate sample (20 

min global ischemia and 0.1 mM SA) and (F) Group IV mouse perfusate sample (20 min 

global ischemia and 1.0 mM SA). 
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collected at 1 min of aerobic perfusion, (D) Group II (ischemia + 0 mM SA) perfusate 

sample collected at 1 min of reperfusion; (E) Group III (ischemia + 0.1 mM SA) perfusate 

sample collected at 1 min of reperfusion; and (F) Group IV (ischemia + 1.0 mM SA) 

perfusate sample collected at 1 min of reperfusion. 

As demonstrated by the chromatograms, the HPLC method provided sufficient 

sensitivity (Figure 8A) and selectivity (Figure 8B) for each of the ATP catabolic by-

products.  Figures 8C, 8D, 8E and 8F demonstrate how changes in experimental conditions 

(ischemia and SA concentrations) resulted in increased concentrations of inosine and 

hypoxanthine effluxed from the heart.  Particularly Figures 8E and 8F demonstrate higher 

levels of ATP catabolic by-products suggesting the presence of SA in the Krebs buffer 

exacerbates ATP uncoupling only in the ischemic mouse hearts.  It is also noteworthy that 

the heart subjected to ischemia under 1.0 mM SA (Group IV, Figure 8F)  

had elevated levels of ATP catabolic by-product adenosine, which is the nucleoside 

precursor to inosine and indicative of the largest total amount of ATP catabolic by-

products effluxed due to the effect of 1.0 mM SA on the ischemic heart.  All 

chromatograms obtained from animal reperfusates using SA in the Krebs buffer solution 

lacked detectable levels of xanthine and uric acid components, thus supporting published 

research citing ASA and SA inhibitory effects on the XO enzyme (Carlin et al., 1985; 

Masuoka et al., 2003). 

Method validation was performed as described in our previous publication 

(Farthing et al., 2007) and in summary, the method demonstrated sufficient linearity of the 

calibration standards (inosine curve 0.9-18.6 µM, hypoxanthine curve 1.8-36.7 µM, with 
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R>0.9990 for each component) and method detection limits of 0.4 µM (inosine) and 0.7 

µM (hypoxanthine).  Method accuracy and precision for inosine and hypoxanthine was 

determined using quality control samples (n=15) with acceptable combined intra-day and 

inter-day component accuracy (±6 % error) and precision (±8.1 % CV).  To demonstrate 

component stability, re-injections of the animal perfusate samples were made after sitting 

on the HPLC autosampler overnight at lab ambient temperature and again after long term 

storage.  Both inosine and hypoxanthine in animal perfusate demonstrated excellent 

stability overnight on the HPLC autosampler and for more than 6 months when stored at 

-20°C. 

3.3.2 Effect of Salicylic Acid on Purine Efflux 

 Table 7 lists mean (SEM) inosine and hypoxanthine concentrations for the mouse 

hearts representing each of the 5 experimental groups.  As shown in Figure 9, Control 

group without both cardiac ischemia and SA (Farthing et al., 2006) and Group I (non-

ischemic hearts but using 1.0 mM SA, the highest tested SA concentration) did not have 

detectable amounts of ATP catabolic by-products.  However, inosine levels for Groups II, 

III and IV (all underwent global ischemia) had significantly elevated total inosine efflux of 

1,437±348, 3,872±900, and 12,575±3319 ng/mL/min respectively (mean ± SEM, Figure 

9), i.e. Groups II (P<0.05), III (P<0.05), and IV (P<0.01) as compared with the Control 

group (Dunnett test).  These inosine results demonstrate that SA concentrations increased 

ATP catabolism under our conditions of acute global cardiac ischemia with groups III and 

IV mean total effluxed inosine levels potentiated above group II by approximately 2.7-fold 

and 8.8-fold, respectively. 
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Table 7. Table with mean (SEM) inosine and hypoxanthine concentrations and 

inosine/hypoxanthine ratios under various experimental conditions (control and global 

cardiac ischemia) and concentrations of salicylic acid in Krebs buffer (0, 0.1 and 1.0 mM). 

Sample Ischemia
Reperfusion 
Time (min)

Mean 
Hypoxanthine 

[µM]
SEM 

Hypoxanthine
Mean Inosine 

[µM]
SEM 

Inosine
Inosine/Hypoxanthine 

ratio

Krebs 
Salicylic 

Acid Level
Control No 0 0 0 0 0 N/A 0  mM SA
(n=6) 1 0 0 0 0 N/A

3 0 0 0 0 N/A
5 0 0 0 0 N/A
10 0 0 0 0 N/A
20 0 0 0 0 N/A

Group I No 0 0 0 0 0 N/A 1.0 mM SA
(n=6) 1 0 0 0 0 N/A

3 0 0 0 0 N/A
5 0 0 0 0 N/A
10 0 0 0 0 N/A
20 0 0 0 0 N/A

Group II Yes 0 2.8 2.0 1.2 2.0 0.4 0 mM SA
(n=6) 1 111.5 0.6 200.9 0.6 1.8

3 29.4 0.6 41.7 0.6 1.4
5 9.7 2.0 16.9 1.0 1.7
10 9.7 2.0 15.5 1.2 1.6
20 2.8 2.0 2.6 1.2 0.9

Group III Yes 0 0 0 0 0 N/A 0.1 mM SA
(n=6) 1 230.7 0.7 391.5 0.5 1.7

3 83.0 0.4 117.8 0.4 1.4
5 38.9 1.4 53.7 0.8 0
10 38.9 1.4 49.6 1.0 0
20 11.0 1.4 4.5 1.4 0

Group IV Yes 0 15.4 1.5 12.9 1.5 0.8 1.0 mM SA
(n=6) 1 183.2 1.1 761.3 1.1 4.2

3 89.2 1.2 240.0 1.5 2.7
5 46.3 1.4 85.4 1.6 1.8
10 20.9 1.4 19.1 1.3 0.9
20 14.2 1.5 10.7 1.5 0.8  
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Figure 9. Bar chart representing total effluxed inosine (mean + SEM) for control (Ctrl), 

Group I, Group II, Group III and Group IV experimental conditions.  Groups II, III and IV 

demonstrated statistical significance (* is p<0.05, ** is p<0.01) from Ctrl (Dunnett test) 

and Group I (Tukey test).  Ctrl (no ischemia and no SA), Group I (no ischemia and 1.0 mM 

SA), Group II (20 min global ischemia and no SA), Group III (20 min global ischemia and 

0.1 mM SA) and Group IV (20 min global ischemia and 1.0 mM SA). 
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 It should be noted that we did not observe any ATP catabolic by-products from 

group I animals (1.0 mM SA and non-ischemic).  Based on published work (Nulton-

Persson et al., 2004; Cronstein et al., 1994), we suspected that in the presence of 1.0 mM 

SA we might observe low concentrations of ATP catabolic by-products even under non-

ischemic conditions.  However, we did not observe either inosine or hypoxanthine in 

detectable levels from any perfusate samples from this experiment group.  One possible 

explanation is that these authors used cardiac mitochondrial preparations for their studies 

and not the entire heart tissue as did our study.  They reported 1.0 mM SA uncoupling 

oxidative phosphorylation by approximately 20% (using oxygen electrode and α-

ketoglutarate dehydrogenase enzyme analysis) which may not produce high enough 

concentrations of ATP metabolites to activate the normally dormant adenosine deaminase 

and PNP enzymes, thus inosine and hypoxanthine would not be produced and detected.  

Using SA and ischemic conditions together would combine the effects of SA (ATP 

decoupling) and ischemia (blocks ATP synthesis) and lead to significant reduction in 

cellular ATP concentration and the potentiated effluxed levels of inosine observed in our 

present study. 

3.3.3 Effect of Salicylic Acid on Cardiac Function 

Figure 10 bar charts (mean ± SEM) demonstrate the effects of SA on cardiac 

functional parameters (DF, HR, RFP).  No significant differences were found in HR for all 

experimental conditions.  For DF and RFP, significance (P<0.05, Tukey test) was 

demonstrated between Groups III and IV relative to each other but neither group was 

statistically different than control (Dunnett test).  Cardiac DF and RFP were slightly 
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Figure 10. Bar chart representing mean ± SEM for cardiac developed force (DF), heart rate 

(HR) and rate-force product (RFP) at the end of 30 min reperfusion for each of the 

experimental groups.  Developed force and RFP on Groups III and IV demonstrated 

statistical significance (* is p<0.05, Tukey test) between each other, however neither 

demonstrated significance from control (Ctrl) (Dunnett test) nor Group I (Tukey test).  

Control (no ischemia and no SA), Group I (no ischemia and 1.0 mM SA), Group II (20 

min global ischemia and no SA), Group III (20 min global ischemia and 0.1 mM SA) and 

Group IV (20 min global ischemia and 1.0 mM SA). 
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increased (beneficial) at the 0.1 mM SA concentration, but adversely affected at 1.0 mM 

SA.  Theses results demonstrate that under conditions of acute global cardiac ischemia, 

higher levels of SA in the Krebs buffer exhibited an increasing relationship on effluxed 

inosine; however a beneficial then adverse effect on DF and RFP was observed.  These 

results have confirmed the previously reported positive inotropic effects of ASA on cardiac 

contractility through inhibiting COX enzymes and in turn prostaglandin synthesis 

(Karmazyn, 1986) and through its modulating effects on cellular calcium levels 

(Molderings et al., 1987). 

3.3.4 Non-Linear Relationship of Inosine Efflux and Cardiac Contractile Function 

Following Ischemia 

Figure 11 is a correlation plot which demonstrates the lack of correlation between 

total effluxed inosine (in Groups II, III and IV) and DF or FRP, with r2 (coefficient of 

determination) values of 0.52 and 0.59, respectively.  This non-linear relationship can be 

explained by an apparent beneficial effect of 0.1 mM SA on heart contractility, yet an 

adverse effect at 1.0 mM SA, while total effluxed inosine increased with increasing SA 

concentrations.  Therefore, whereas the inosine efflux concentration could serve as a 

sensitive biomarker for acute cardiac ischemia, it appears to be a poor predictor of the 

individual post-ischemic cardiac functional recovery, at least in this ex vivo model. 

3.3.5 Effect of Salicylic Acid on Purine Nucleoside Phosphorylase Activity 

 Figure 12 illustrates the ATP catabolic by-products resulting from acute cardiac 

ischemic conditions.  Normally dormant enzymes in heart tissue (e.g. adenosine  
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Figure 11.  Correlation plot demonstrating lack of significant linear correlation between 

total effluxed inosine (AUC) and DF or RFP in the ischemic mouse hearts under various 

SA concentrations (0, 0.1 and 1.0 mM).  Group II (20 min global ischemia and no SA), 

Group III (20 min global ischemia and 0.1 mM SA) and Group IV (20 min global ischemia 

and 1.0 mM SA). 

0 3 0 0 0 6 0 0 0 9 0 0 0 1 2 0 0 0 1 5 0 0 0 1 8 0 0 0
0

2 5

5 0

7 5

1 0 0
r 2 = 0 . 5 2
P = 0 . 4 9

G r o u p  I I

G r o u p  II I

G r o u p  IV

I n o s i n e  A U C ( n g /m l /m in )

D
ev

el
op

ed
 F

or
ce

(%
 o

f P
re

-Is
ch

 B
as

el
in

e
)

0 3 0 0 0 6 0 0 0 9 0 0 0 1 2 0 0 0 1 5 0 0 0 1 8 0 0 0
0

2 5

5 0

7 5

1 0 0
r 2 = 0 . 5 9
P = 0 . 4 4

G r o u p  I I

G r o u p  II I

G r o u p  IV

I n o s i n e  A U C ( n g / m l / m i n )

R
at

e
-F

o
rc

e
 P

ro
d

u
ct

(%
 o

f 
Pr

e
-Is

ch
 B

as
e

lin
e

)



 90

 

 

N

O

NH N

N

O N
H

O

NH N
H

N O N
H

O

NH
N

N
O

O N N

N
N

N

O

H

N

N N

N

O

O2,H2O H2O2 O2,H2O H2O2

OH2 NH3

OH2

Pi

OH2

Pi

OH2 NH3

H

Hypoxanthine

Xanthine Uric Acid

HO   OH

HO

Adenosine

HO   OH

HO

Inosine

2
H

adenosine
deaminase

purine nucleside
phosphorylase

xanthine
oxidase xanthine

oxidase

 adenylate deaminase

Cellular
  AMP

Hypoxanthine

H

H

IMP

nucleotidase
5' - nucleotidase

Pi Ribose-1-P

xanthine
dehydrogenase

xanthine
dehydrogenase

NAD+ NADH NAD+ NADH

 

Figure 12. Biochemical pathway of ATP catabolic by-products resulting from global acute 

cardiac ischemia. 
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deaminase, purine nucleoside phosphorylase) are activated due to cellular buildup of ATP 

catabolic by-products (e.g. ADP, AMP).  Under our experimental conditions, inosine and 

hypoxanthine were the primary effluxed by-products of ATP catabolism.  In observation of 

the larger amounts of total inosine effluxed in our 1.0 mM SA perfusate samples, we 

wanted to investigate if SA had a negative effect (inhibitory) on PNP enzyme activity 

which might account for the potentiated effluxed inosine levels. 

 The PNP enzyme activity under ischemic conditions can be indirectly determined 

by calculating the conversion of inosine to hypoxanthine ratio on each perfusate sample.  

Table 7 lists the inosine [µM]/hypoxanthine [µM] (ino/hypo) conversion ratio for the 

experimental groups.  In Group II (ischemia, 0 mM SA), the ino/hypo mean conversion 

ratio was approximately ~1.3.  Under Group IV experimental conditions (ischemia, 1.0 

mM SA), the ino/hypo conversion ratios were not constant with the perfusate sample 

collected at 1 min of reperfusion having the largest ino/hypo ratio, and at the subsequent 

time points returning to a more constant ino/hypo conversion ratio (~0.9) (Figure 13). 

 These results can be explained by two effects occurring simultaneously when using 

both SA and ischemia conditions.  Cardiac ischemic (anaerobic) conditions can cause ATP 

catabolism as demonstrated in our previous work (Farthing et al., 2006), while SA has 

been reported to cause decoupling of cardiac mitochondrial respiration (Nulton-Persson et 

al., 2004).  Both situations may contribute to the increase in ATP catabolic by-products as 

heart muscle contractions require significant amounts of ATP as its primary energy source.  

This leads to cellular buildups of ADP and AMP metabolic by-products as ATP is not able 

to be regenerated (via salvage pathway) or synthesized, thus ATP catabolism occurs to 
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eliminate the cellular buildup of by-products.  As aerobic conditions to the heart tissue was 

reestablished via reperfusion, the ino/hypo conversion ratio returns to a more constant 

conversion ratio (e.g. ~0.9).  The conversion ratio drops to zero as aerobic conditions 

should deactivate ADA and PNP enzymes in the cardiac myocytes, thus inhibiting ATP 

catabolism (Figure 13). 

3.3.6 Potential Clinical Relevance 

 Since both ASA and SA have been reported to uncouple mitochondrial respiration 

under aerobic conditions and in turn to inhibit ATP synthesis (Nulton-Persson et al., 2004) 

and our current study demonstrates a potentiated ATP catabolism by SA under cardiac 

ischemia, it is possible that current use of ASA for medical emergency treatment in acute 

cardiac ischemic situations (e.g. acute MI) may potentially increase the ischemia-caused 

ATP catabolism and inosine efflux. 

While standardized doses of ASA (160 to 325 mg) are used to inhibit platelet 

aggregation at the site of thrombus as part of the treatment for acute MI, the higher 325 mg 

dose equates to a potential Cmax of 67 µM acetyl salicylic acid and 188 µM salicylic acid 

blood concentrations.  Even with its significant protein binding (e.g. albumin), the 

augmented free drug levels of ASA and its metabolite SA may have an inhibitory effect on 

cardiac ATP production during the periods of acute cardiac ischemia.  The SA-induced 

enhancement of inosine efflux should also be taken into consideration when we analyze 

and interpret the patient’s plasma inosine level as a potential biomarker for acute cardiac 

ischemia (Farthing et al. 2006, 2007). 
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Figure 13. Plot of inosine [µM] to hypoxanthine[µM] (ino/hypo) conversion ratio versus 

reperfusion time (min).  The plot represents mean data from experimental conditions.  

Ino/hypo conversion ratio is highest in the 1 min reperfusion sample and returns to a 

constant ratio before dropping as aerobic conditions presumably deactivate ADA and PNP 

enzymes in the cardiac myocytes. 
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Whereas there are certainly positive benefits associated with using ASA as part of 

the treatment for acute MI patients to inhibit platelet aggregation at the site of thrombus, 

higher doses of ASA used for other medical conditions including analgesia (0.5 mM 

plasma salicylate) and rheumatoid arthritis (1.5 to 2.5 mM plasma salicylate) may actually 

aggravate the ischemic effects on heart tissue metabolism and ventricular contractile 

function, if the patients who have been using higher dose of ASA suddenly encounter acute 

cardiac ischemic events.  This animal research on isolated mouse hearts utilized SA levels 

of 0.1 and 1.0 mM, which were slightly lower but similar to expected blood concentrations 

in human patients utilizing aspirin as treatment for the above described medical conditions 

(e.g. acute MI, rheumatoid arthritis).  We suggest that further laboratory and clinical 

studies are warranted on the apparent adverse effects of higher concentrations of ASA and 

SA on ATP catabolism under acute cardiac ischemia, given the knowledge of how 

widespread ASA is used for its other medical benefits (e.g. analgesia, rheumatoid arthritis) 

and the possibility of those patients one day experiencing an acute cardiac  

ischemic event. 
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CHAPTER 4. Human Plasma Sample Evaluation, “An HPLC method for 
determination of inosine and hypoxanthine in human plasma from 

healthy volunteers and patients presenting with potential acute cardiac 
ischemia” 

 
 
 
4.1 Introduction 
 

The mouse model results from Chapter 2 research demonstrated significant levels 

of inosine and elevated levels of hypoxanthine effluxed from cardiac tissue subjected to 

constant conditions of oxidative stress (e.g. acute cardiac ischemia or myocardial 

infarction) (Farthing et al., 2006).  For this chapter of research, the HPLC method from 

Chapter 2 was modified and validated for the evaluation of human plasma samples, which 

are significantly more complex than Krebs perfusate samples from Chapter 2.    The 

purpose for the development of a plasma test method was to facilitate evaluation of the 

research hypothesis that non-traumatic chest pain patients potentially undergoing acute 

cardiac ischemia; should have elevated blood levels of ATP catabolic products (e.g. 

inosine and hypoxanthine) in their bloodstream, until medical treatment can succeed in 

restoring adequate blood flow to the oxygen deprived myocardium. 

Samples representing healthy individuals, hospital non-traumatic chest pain 

patients as well as other common vascular disease (e.g. congestive heart failure (CHF), 

hypertension (HT)) conditions were evaluated for inosine and hypoxanthine concentration 
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levels.  In addition, subject matched sample sets comprised of consecutive blood draws for 

plasma (heparin) and serum separator tube (SST), from healthy normal individuals were 

evaluated to determine if the blood draw matrix (e.g. anticoagulants, SST gel) affected 

inosine and hypoxanthine concentrations. 

Current test methods for endogenous cardiac biomarkers (e.g. cardiac troponin I, 

creatine kinase-MB and myoglobin) include LC-MS analysis (Bunk et al., 2000; Mayr et 

al. 2006) and fluorescence immunoassay (Apple et al., 1999; Heeschen et al., 1999; Apple 

et al., 2000; McCord et al., 2001); however elevation of these protein biomarkers reflect 

some level of myocardial necrosis, and are typically elevated in a diagnostic range several 

hours after acute myocardial infarction.  Current methods for plasma level measurement of 

selected ATP catabolic by-products such as inosine, hypoxanthine, xanthine and uric acid, 

in plasma utilize HPLC-UV with sample preparation steps including solid phase extraction 

(Feng et al., 2000), protein precipitations (e.g. ethanol or TCA) as well as some methods 

requiring use of an internal standard (Boulieu et al., 1983; Boulieu et al., 1984).  HPLC 

with ion pairing reagents (Scott et al., 1992; Furst et al., 1992; Tavazzi et al., 2005) or 

protein precipitation and enzyme catalyzed luminescence detection (Jabs et al., 1990) have 

also been used.  One HPLC method utilized centrifugal filtration for sample preparation; 

however their method did not completely resolve hypoxanthine and xanthine components 

at concentrations five times lower than our patient hypoxanthine concentrations, and with 

reported column degradation after three months of use (Severini et al., 1987). 

None of these techniques, however, offers as simple a determination for inosine 

and hypoxanthine (can also evaluate uric acid, adenosine, and xanthine) in human plasma 
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as the method detailed in this chapter of research.  The method utilizes centrifugal 

membrane filter technology and does not require the use of an internal standard.  In 

addition, this method employs a recently introduced HPLC column technology (Onyx™ 

monolithic column, Phenomenex® Inc. 2005 market introduction) (Phenomenex Inc.), 

which provided sufficient component resolution and sensitivity for measurement of inosine 

and hypoxanthine in human plasma samples, from healthy volunteers and emergency 

department patients presenting with chest pain with and without acute cardiac ischemia. 

4.2 Human Plasma and Serum Sample Procurement 
 
 To obtain human plasma samples used for analytical evaluations (HPLC-UV and 

Luminometer), approvals from Virginia Commonwealth University (VCU) Institutional 

Review Board (IRB) (Appendix C) and Chippenham Hospital (Richmond, VA) Clinical 

Chemistry Department were obtained.  Plasma samples (lithium heparin) from normal 

healthy individuals (non-symptomatic for cardiac disease) were acquired from VCU 

Medical Center and plasma samples (lithium heparin) from non-traumatic chest pain 

patients were acquired from Chippenham Hospital Clinical Chemistry Department.  All 

obtained samples were frozen (-20°C or below) after draw and prior to analysis. 

In addition, purchased human plasma (EDTA and lithium heparin anticoagulant) 

from cardiac diseased patients (e.g. hypertension, acute myocardial infarction), human 

blank plasma (lithium heparin anticoagulant) and serum samples (SST and non-SST) were 

commercially obtained from a FDA certified biorepository, ProMedDx (Norton, MA, 

USA) (Appendix D), which utilized an IRB protocol for their sample procurements.  The 
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ProMedDx samples were stored frozen (-20°C or below) after draw and during storage 

prior to analytical evaluations. 

 
4.3 HPLC-UV Assay Development 

4.3.1 Experimental 

4.3.1.1 Chemicals and Blank Plasma 

 Hypoxanthine and xanthine were purchased from Acros Organics (Fair Lawn, NJ, 

USA) and adenosine, inosine and uric acid were purchased from Sigma-Aldrich (St. Louis, 

MO, USA) with all chemicals being ACS reagent grade or higher purity.  For mobile phase 

preparation, trifluoroacetic acid (TFA) was reagent grade, methanol was Optima HPLC 

grade and both were purchased from Fisher Scientific (Fair Lawn, NJ, USA).  Ultrapure 

distilled and deionized water (18 MΩ-cm) used for all HPLC work was prepared in-house 

using PureLab® Ultra water purification system (US Filter, Lowell, MA, USA) and 0.2 µm 

filtered prior to use.  Blood bank human blank plasma (acid citrate) used for preparation of 

controls was provided by VCU Medical Center, Richmond, VA USA. 

4.3.1.2 HPLC Equipment and Mobile Phase 
 
The HPLC-DAD (diode array detector) equipment consisted of a Hewlett Packard 

(HP) Model 1090 HPLC system (Agilent Technologies, Palo Alto, CA, USA).  The 

analytical column used was a Phenomenex® Onyx™ monolithic C18, 20 cm x 4.6 mm I.D., 

130 Å column coupled to an Onyx™ C18 guard column, 5 cm x 4.6 mm I.D. (Torrance CA, 

USA).  The guard column was replaced after each analytical run of approximately 50 

samples.  The mobile phase consisted of aqueous trifluoroacetic acid (0.1% TFA in 
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deionized water, pH 2.2, v/v) and methanol gradient.  The mobile phase gradient was 

programmed with time course as follows (99:1 0.1% TFA in deionized water:methanol, 

v/v at 0 min and held for 3 min; 70:20 0.1% TFA in deionized water:methanol, v/v at 10 

min; 5:90 0.1% TFA in deionized water:methanol, v/v at 11 min and held 2 min, and 99:1 

0.1% TFA in deionized water:methanol, v/v at 14 min). 

The mobile phase was continuously degassed using helium sparging and used at a 

flow-rate of 1.0 ml/min.  Typical HPLC operating pressure at gradient time 0 min 

conditions was approximately 84 bar with ambient column temperature.  An injection 

volume of 15 µl of the prepared plasma sample was accomplished using the HP Model 

1090 autosampler.  Component detection was achieved using the HP Model 1090 DAD 

detector with data collection at the optimal UV wavelength absorption of 250 nm for both 

inosine and hypoxanthine.  The detector was operated at high sensitivity set point with a 1 

s response time.  A 345 kPa back-pressure regulator (SSI, State College, PA, USA) was 

coupled to the detector outlet to prevent mobile phase out-gassing.  Data acquisition and 

component computations were performed using TotalChrom™ Workstation software 

(Perkin Elmer™, Norwalk, CT, USA). 

4.3.1.3 Standard and Control Preparation, Freeze-Thaw Study 

Stock standards of adenosine (374.2 µM), inosine (372.8 µM), hypoxanthine (734.7 

µM), xanthine (657.4 µM) and uric acid (594.8 µM) were prepared in deionized water and 

stored at 4°C.  Working standards to establish HPLC retention times of adenosine (9.4 

µM), xanthine (16.4 µM) and uric acid (14.9 µM) components were prepared in deionized 

water.  Working standards of inosine (0.9, 1.9, 3.7, 11.2 and 18.6 µM) and hypoxanthine 
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(1.8, 3.7, 7.3, 22.0 and 36.7 µM) were prepared in deionized water.  All working standards 

were stored at -70°C and stable for at least 6 months.  Working controls of inosine (0.9, 7.5 

and 14.9 µM) and hypoxanthine (1.8, 14.7 and 29.4 µM) were prepared using pooled 

hospital blood bank blank plasma (n=3 donated lots) which were evaluated individually 

and confirmed to lack detectable levels of inosine and hypoxanthine components. 

It is possible the levels of inosine and hypoxanthine in blood bank plasma were not 

detectable due to the time (>10 days) the plasma was stored refrigerated (4°C) prior to 

expiration and availability for laboratory experimental use.  Without freezing the plasma or 

utilizing plasma enzyme inhibitors, xanthine oxidase and purine nucleoside phosphorylase 

found in plasma may metabolize the normally low levels of inosine and hypoxanthine to 

their end product uric acid.  Following preparation of control samples, they were 

immediately frozen at -70°C, to prevent endogenous plasma purine nucleoside 

phosphoryase from converting inosine to hypoxanthine prior to formal sample analysis. 

To demonstrate inosine and hypoxanthine freeze-thaw stability, control samples at 

each concentration were freeze-thawed (n=2 times) and evaluated by HPLC for 

degradation.  The lack of inosine and hypoxanthine degradation from freeze-thaw from 

-70˚C was demonstrated by inosine and hypoxanthine concentrations being consistent 

(<6.0% error) with the results from the accuracy and precision evaluation (Table 8). 

4.3.1.4 Sample Conditions 

 Following hospital approval, blood was obtained from hospital emergency room 

patients (n=20), in vacutainer™ tubes containing plasma (lithium heparin) as per hospital 

emergency room protocols for patients presenting with non-traumatic chest pain and 
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potential MI or acute myocardial ischemia.  Sample tubes were centrifuged at ~1000 g for 

10 min with plasma drawn off and split into tubes for hospital clinical testing and one tube 

immediately frozen at -20°C (transferred to -70°C for storage) for inosine and 

hypoxanthine analysis.  Plasma (lithium heparin) samples from healthy blood donors (male 

and female, both genders >18 years of age) were purchased from ProMedDx (Norton, MA, 

USA) which used an IRB approved specimen collection protocol and stored frozen at -

70°C.  Prior to HPLC analysis, plasma samples were thawed to ambient temperature, 

mixed thoroughly by inversion and centrifuged at 1000 g for 10 min to eliminate fibrous 

material. 

4.3.1.5 Sample Preparation 

Samples were prepared for HPLC analysis by pipetting 250 μl of plasma into a 

polypropylene Microcon® YM-10 (10,000 molecular weight cutoff, MWCO) centrifugal 

filter tube (Millipore, Bedford MA, USA).  The sample tubes were capped and centrifuged 

at 14,000 g for 15 min at ambient lab temperature.  The clear filtrates were transferred to 

deactivated glass HPLC autosampler vials (Waters®, Milford MA, USA) with 15 μl 

injected into the HPLC system for analysis. 

4.3.2 Results and Discussion 

4.3.2.1 HPLC Conditions Optimizations 

Several types of C18 columns were evaluated for resolving adenosine, inosine, 

hypoxanthine, xanthine and uric acid from other plasma components.  Due to minimal 

sample preparation using the centrifugal membrane filter, the ideal HPLC column should 

have high efficiency for resolving inosine and hypoxanthine components from components 
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in the plasma matrix.  Conventional HPLC columns such as Synergi Polar-RP C18 (15 cm 

x 3.0 mm ID x 4 µm packing) and Hypersil ODS C18 (15 cm x 3.2 mm ID x 3 µm packing) 

were evaluated versus the recently marketed HPLC column technology, the Onyx 

monolithic C18 column (10 cm x 4.6 mm ID). 

The monolithic column provided superior chromatographic resolution of 

components as described later in section 4.3.2.4 with a low system backpressure of 

approximately 84 bar (gradient time zero conditions and flow rate of 1 ml/min).  It should 

be emphasized that both conventional HPLC columns were evaluated at operating flow 

rates of ~0.6 ml/min and with system pressures that were approximately twice as high as 

when using the monolithic column.  The supplier of the monolithic column cited 

advantages of high component efficiencies (resolution) and low system backpressure with 

use of the new monolithic column technology.  We observed that both of these stated 

advantages over the two conventional mid-bore diameter HPLC columns evaluated were 

clearly demonstrated.  The mobile phase aqueous component, 0.1% TFA in deionized 

water, provided a pH of 2.2 which also provided good peak shape (e.g. uric acid 

component, pKa ~5.8) from components of interest from the endogenous plasma 

components (MW <10,000 Da) obtained from the YM-10 sample preparation. 

Optimization and adjustment of the acid strength improved the separation between 

hypoxanthine (RT 5.2 min) and uric acid (RT 5.7 min). Initial use of aqueous 0.05% TFA 

did not provide component baseline resolution while aqueous 0.1% TFA offered complete 

component baseline resolution at the expense of increased column retention times.  The 

mobile phase organic modifiers (e.g. acetonitrile versus methanol) were evaluated to 
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determine which organic solvent would provide the best chromatographic separation from 

endogenous plasma components and at the same time being most cost effective.  Methanol 

was chosen as the organic modifier as it provided symmetrical component peak shapes and 

good selectivity from other endogenous plasma components; however the HPLC system 

backpressure was somewhat higher when using methanol with the methanol gradient 

increasing from 1 to 90%.  Methanol is also more cost effective for routine HPLC analysis 

because of its lower procurement cost. 

A mobile phase gradient was used for reproducible separations of the structurally 

similar purines (hypoxanthine, uric acid) and nucleosides (inosine, adenosine).  Since the 

mobile phase organic constituent is critical to controlling component elution times (initial 

1% methanol composition at gradient time zero), the use of protein precipitation technique 

using solvents such as acetonitrile or methanol (typically 1:1 or 2:1, organic:plasma ratio) 

was eliminated from consideration..  The structurally similar components injected using 

organic solvent precipitation were not chromatographically resolved due to band 

broadening effects from the added organic modifier.  Different column oven temperatures 

(e.g. ambient lab of 20°C, 30°C and 40°C) were evaluated without significant 

chromatographic improvement (component resolution, peak shape), thus ambient 

temperature was utilized for the analysis.  At higher column temperatures (e.g. 40°C), 

component co-elution for both early (hypoxanthine, uric acid) and late components 

(inosine, adenosine) was observed. 
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4.3.2.2 Linearity, Limits of Quantitation and Detection, Computations 

The plasma method was linear throughout the concentration range of 0.9 to 18.6 

µM for inosine (mean correlation coefficient of 0.9991, n=10) and 1.8 to 36.7 µM 

hypoxanthine (mean correlation coefficient of 0.9998, n=10) with all standard back-

calculated values within 5% of their nominal amount.  The limit of detection (LOD) for 

inosine (0.4 µM) and hypoxanthine (0.7 µM) was determined using a fortified amount of 

each component in pooled blood blank plasma (n=3 each) and calculation from each 

component’s standard curve (component peak heights had greater than 3 times s/n than 

blank plasma background).  For plasma component calculations and reporting results, 

normal linear regression utilizing external standardization and peak height was used with 

the lowest calibration standard as the limit of quantification (defined as combined accuracy 

and precision within 20% of the nominal amount). 

4.3.2.3 Accuracy, Precision and Recovery 

The accuracy and precision for the method was determined by evaluation of 

replicate prepared plasma control samples (inosine at 0.9, 7.5, 14.9 µM and hypoxanthine 

at 1.8, 14.7, and 29.4 µM) (Table 8).  The combined intra-day (within day) and inter-day 

(between day) accuracy of the method was reported as the percent error of nominal 

fortified amounts versus measured component concentrations.  The combined intra-day 

and inter-day precision of the method was reported as percent relative standard deviation 

(% RSD).  The method demonstrated sufficient accuracy (±6%) and precision (±8.1) for 

both components in plasma (n=15 at each component concentration level).  Absolute 

recovery for the plasma method was evaluated by comparing the extracted fortified control 
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Table 8 

Combined intra and inter-day accuracy and precision for inosine and hypoxanthine in 

plasma controls.  Controls demonstrated excellent accuracy ±6% and precision ±8.1% 

throughout the plasma concentration range. 

 

 

Component 

Fortified 

Concentration (µM) 

n=15 

Calculated Mean 

Concentration (µM) 

n=15 

 

% Error 

 

% RSD 

Inosine 0.93 0.91 -2.8 8.1 

Inosine 7.5 7.3 -1.7 4.9 

Inosine 14.9 14.6 -2.2 3.6 

Hypoxanthine 1.84 1.95 6.0 7.5 

Hypoxanthine 14.7 15.0 2.2 5.5 

Hypoxanthine 29.4 28.9 -1.7 2.2 



 107

samples prepared in pooled blood blank plasma versus unextracted standards prepared in 

deionized water (n=3).  The absolute recovery for the plasma method was determined to be 

>98% for both inosine and hypoxanthine.  In addition, the standards and controls used for 

all HPLC analysis were prepared and handled identical to patient and volunteer subject 

samples, thus controlling for potential errors in sample handling, micropipetting and YM-

10 component extraction recovery. 

4.3.2.4 Chromatography 

Figure 14 illustrates chromatograms of 14.7 µM hypoxanthine (RT ~5.3 min), 11.9 

µM uric acid (RT ~5.8 min), 13.1 µM xanthine (RT ~7.2 min), 7.5 µM adenosine (RT 

~10.7 min) and 7.5 µM inosine.  patient. (RT ~10.9 min) in deionized water for marking 

component retention times; limit of quantitation and lowest plasma standard of 1.84 µM 

hypoxanthine and 0.93 µM inosine; pooled blank plasma (acid citrate) from the VCU 

Health Systems Hospital blood bank; prepared plasma (lithium heparin) from a healthy 

female subject; and prepared plasma (lithium) from a hospital emergency room female 

patient exhibiting symptoms of chest pain and acute myocardial ischemia (Figures A, B, C, 

D and E, respectively). 

The method demonstrated good component chromatographic selectivity with no 

endogenous plasma interferences at the retention times of hypoxanthine and inosine.  This 

method also provided sufficient sensitivity for both components of interest using 

conventional UV detection with an analytical run time of ~21 min (allows mobile phase 

gradient equilibration).  To extend column lifetime, the analytical column was flushed after 
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Figure 14. Chromatograms illustrating (a) 14.7 µM hypoxanthine (RT ~5.3 min), 11.9 µM 

uric acid (RT ~5.8 min), 13.1 µM xanthine (RT ~7.2 min), 7.5 µM adenosine (RT ~10.7 

min) and 7.5 µM inosine (RT ~10.9 min) in deionized water, (b) low standard of 1.84 µM 

hypoxanthine and 0.93 µM inosine in blank plasma, (c) blank plasma, (d) plasma sample 

from healthy female subject and (e) plasma sample from hospital emergency room female 
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each analytical run (~50 injections) for 1 h at 1.0 ml/min with acetonitrile: deionized water 

(90:10, v/v) to eliminate potential retained non-polar substances from the column. 

4.3.2.5 Sample Preparation Optimization and Filtrate Stability 

Sample preparation evaluations using protein precipitation and centrifugal 

membrane filters were conducted.  As previously described in Section 4.3.2.1, organic 

solvent precipitation was not useful due to resulting poor chromatographic resolution of 

structurally similar components.  TCA (trichloroacetic acid) was not evaluated due to the 

hazards of using the strong acid and the resulting sample dilution effect potentially 

affecting overall method sensitivity.  The centrifugal membrane filter is commonly used to 

concentrate peptides, proteins and nucleic acids for proteonomic and genomic 

determinations [Microcon Centrifugal Filter Devices]. 

Since the molecular weights of our components are all less than 300 Da, our 

approach to using this technique was to inject the filtrate which would contain the low 

molecular weight components that transfers across theYM-3 or YM-10 cellulose 

membrane cutoff filters.  This essentially removes most peptides and all proteins from the 

sample to be injected as they are retained by the cellulose membrane cutoff filter, thus 

improving method selectivity.  Method sensitivity is also improved because there is no 

sample dilution effect since there is no solvent added. 

Evaluations to optimize sample preparation conditions using the YM-10 (10,000 Da 

MWCO) and YM-3 (3,000 Da MWCO) centrifugal filter were conducted.  With the 

centrifugal force set at 14,000 g (recommended by YM-10 supplier) and using 250 uL of 

prepared plasma control samples, the centrifuge spin time was varied from 5, 15, 30 and 60 
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min.  The five min spin time did not provide enough time to adequately separate plasma 

proteins from the aqueous matrix (salts, small peptides and substances less than 10,000 Da) 

with an insufficient amount of sample filtrate recovered.  The 15, 30 and 60 min 

centrifugal spin times resulted in maximum recovery of sample filtrate.  However the 60 

min spin filtrate samples were significantly warmer than ambient lab temperature most 

likely due to warming effects of the sample tubes friction with air from the centrifugal 

spin.  Thus to eliminate potential component degradation due to heat from spinning 60 min 

and to shorten sample preparation time, a spin time of 15 min was used for all analyses as 

described in section 3.3. 

Results for the YM-3 filter evaluation demonstrated longer spin times were required 

(~45 to 60 min) at 14,000 g versus the 15 min spin using the YM-10 filter.  The YM-3 

filtrate did not offer better filtration of smaller plasma peptides (<10K Da), as observed on 

chromatograms, than was already achieved using the YM-10 filter.  However, using either 

YM-3 or YM-10 filter effectively removed the purine nucleoside phosphorylase enzyme 

(nominal weight ~90-94 KDa protein, [Cook et al., 1981; Osborne, 1980]) thus eliminating 

the potential for inosine to hypoxanthine metabolism in the sample filtrate.  The filtrates 

were stored frozen (-70˚C) after HPLC analysis with both inosine and hypoxanthine 

components demonstrating stability for greater than 3 months. 

4.3.2.6 Plasma Purine Nucleoside Phosphorylase Activity 

Purine nucleoside phosphorylase (PNP, EC 2.4.2.1) is an enzyme that rapidly 

metabolizes inosine to hypoxanthine in blood (t½ <5 min due to red blood cells).  This 

enzyme has low activity in plasma and is normally found in human cardiac muscle, GI 
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tract, spleen, brain and red blood cells [Viegas et al., 2000; Yamamoto et al., 1995].  

Therefore, to better estimate an ischemic heart’s effluxed inosine during periods of acute 

cardiac oxidative stress, venous blood samples should be kept cold (ice) and prepared 

immediately.  Either the blood sample should be immediately inhibited (e.g. peldesine, 

competitive inhibitor (Viegas et al., 2000)) or the metabolite hypoxanthine should be 

simultaneously determined with inosine to better estimate the level of acute cardiac 

ischemia. 

In whole blood or plasma samples, hypoxanthine will not be further metabolized to 

xanthine as the human enzyme xanthine oxidase (XO), which is require for hypoxanthine 

to xanthine conversion, has low activity in plasma (Yamamoto et al., 1996) and is typically 

found in human tissue (liver, small intestine) and other bodily fluids (milk and colostrum).  

A plasma (heparinized) sample is recommended for inosine and hypoxanthine 

determination in that the approximate 30 min clot time required for a serum sample would 

allow significant conversion of inosine to hypoxanthine in the collection tube, which 

would contain PNP from the red blood cell and plasma matrix. 

Several evaluations (n=3 samples at each condition) were performed to evaluate 

inosine metabolism by PNP activity in plasma stored at 4˚C (refrigerator), -20˚C and 

-70˚C.  Results of the evaluation can be seen in Figure 15; plasma fortified with inosine 

only at 7.46 µM and without PNP enzyme inhibitor is metabolized rapidly to hypoxanthine 

(~70% in 24 hrs); plasma fortified with 0.93 µM of inosine and 1.84 µM hypoxanthine and 

without PNP enzyme inhibitor is also metabolized rapidly to hypoxanthine (~70% in 24 

hrs); however the plasma fortified with 7.46 µM of inosine and 14.69 µM hypoxanthine 
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Figure 15. Graph of mean percent inosine remaining after plasma PNP metabolism when 

stored at 4˚C.  Square symbols represent fortified amounts of 7.46 µM inosine and 

14.69 µM hypoxanthine in blank plasma (n=3), diamond symbols represent fortified 

amounts of 0.93 µM inosine and 1.84 µM hypoxanthine in blank plasma (n=3), and 

triangle symbols represent fortified amount of 7.46 µM inosine only in blank plasma 

(n=3). 
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and without a PNP enzyme inhibitor, is metabolized less rapidly to hypoxanthine (~30% in 

24 hrs) and slightly less than 50% after 72 hrs.  Results of storing fortified plasma samples 

at -20˚C immediately after preparation indicated a reduced rate of inosine to hypoxanthine 

conversion (~30% after 8 months) with storage at -70˚C almost completely deactivating 

the PNP enzyme (<5% inosine conversion after 3 months).  A possible explanation for the 

plasma hypoxanthine-concentration dependence for the conversion rate of inosine to 

hypoxanthine, would be product inhibition (PNP Keq≈0.04 mM) (Brenda Enzyme 

Database).  This low Keq indicates that thermodynamically, inosine synthesis is favored 

over product conversion to hypoxanthine. 

When the venous sample plasma concentration of hypoxanthine is present at higher 

levels (e.g. 14.69 µM), the conversion of inosine to hypoxanthine by plasma PNP 

decreases in the absence of significant XO enzyme activity, which converts hypoxanthine 

to xanthine and uric acid for biological elimination (therefore XO activity ultimately 

increases PNP activity as it reduces hypoxanthine product inhibition of PNP).  It was also 

determined that the total amount of inosine and hypoxanthine fortified into the pooled 

plasma was recovered, thus verifying the lack of significant XO activity in human plasma 

and supports our recommendation of simultaneous determination of both inosine and 

hypoxanthine components. 

A preliminary investigation to show the utility of the method is shown in Figures 

14D (healthy control with 1.3 µM inosine and 2.74 µM hypoxanthine) and 14E (acute 

cardiac ischemia patient with 2.39 µM inosine and 29.3 µM hypoxanthine).  These figures 

demonstrate an increase in both inosine and hypoxanthine concentrations (as well as final 
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ATP catabolic by-product uric acid) in one patient having presented with non-traumatic 

chest pain and undergoing evaluation for acute cardiac ischemia.  Figure 16 demonstrates 

significant levels (P<0.05) of inosine, hypoxanthine and a combined total inosine plus 

hypoxanthine concentration level in plasma from ED non-traumatic chest pain patients and 

healthy normal controls. 

It is important to discuss the time course of the ED patient’s blood sample draw.  

These patients arrive at the hospital emergency department with the chief complaint of 

non-traumatic chest pain.  Each patient’s time of the non-traumatic chest pain may vary 

(minutes to hours) depending on the severity of their chest pain.  Although the plasma 

samples from the ED that were evaluated for this research represent each patient’s first 

blood sample drawn for standard hospital clinical chemistry analysis (e.g. troponin I, CK-

MB), the samples themselves represent a range of time (minutes to hours) of potential 

patient acute cardiac ischemia.  Therefore, the interpretation of these ED results may have 

this as a potential confounding factor or limitation. 

4.4 Human Plasma (Heparin) versus Serum (SST) Sample Evaluation 

 Using the validated HPLC-UV method as described in Section 4.3, an evaluation 

was performed on commercially purchased human plasma (heparin) and serum (SST) 

samples.  There are many techniques used for the specimen collection of biological fluids 

(e.g. blood component).  Examples are collection of plasma, serum or serum using an inert 

gel barrier (SST) etc.  As reproducibility of test results is a critical method validation 

parameter, it becomes important to determine the proper specimen matrix for analysis and 
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Figure 16. Chart depicting inosine, hypoxanthine, and total inosine plus hypoxanthine 

concentrations (mean + SEM) in plasma from ED non-traumatic chest pain patients and 

healthy normal individuals. 
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to determine if the sample collection matrix affects the component(s) of interest (e.g. 

resulting in artifacts in component concentrations) (Magee, 2005). 

For this research, plasma (lithium) was initially selected for evaluation as many US 

hospitals typically use plasma for measurement of cTnI and CK-MB analysis (e.g. 

Chippenham Hospital).  Serum (SST) is also being evaluated to investigate why one past 

research group (Kock et al., 1994) reported hypoxanthine levels which were not 

statistically significant in their patients that were undergoing acute myocardial infarction 

and other ischemic diseases.  As this research reports elevated levels of inosine and 

significant levels of hypoxanthine in plasma from non-traumatic chest pain patients from a 

local hospital emergency department, it is important to determine and explain how the 

differences in reported hypoxanthine concentrations exist (if possible) between Kock et al. 

and this research since we evaluated similar type of patients (e.g. acute cardiac ischemia). 

Studies on sample collection matrices effects have been performed by other 

investigators with reported differences in analyte levels based on the sample matrix 

(Doumas, 1989), thereby necessitating this matrix effect study.  Samples were acquired 

from normal healthy volunteers (n=6) from a local blood bank (contracted with ProMedDx 

for this sample requirement), with each subject’s blood acquisition being obtained 

sequentially (first serum SST vacutainer sample draw followed by heparin vacutainer 

sample draw), to minimize potential inosine and hypoxanthine concentration level changes 

with time and phlebotomy techniques.  When drawing multiple sample types from the 

same subject, sample order of draw is documented as red top (serum) prior to green top 

(heparin) to prevent potential anti-coagulant (heparin) contamination in the serum sample 
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(ABP, Inc. 2004).  Per ProMedDx, all collected samples were processed and handled 

according to BD Vacutainer® inserts (e.g. centrifugation at 1200 g for 15 min) (BD 

Vacutainer®, 2007), with the serum SST sample taken first followed by the heparin sample 

(prevents potential anticoagulant carryover effect). 

As some biomarkers are diurnal and time sensitive (e.g. some endogenous 

hormones and proteins (e.g. CRP)), it supports the importance of requiring sequential 

samples for this small study to eliminate potential errors, as inosine and hypoxanthine are 

also endogenous to plasma and may possibly fluctuate throughout the day.  After thawing 

samples to ambient temperature, each was prepared using the 30K centrifugal membrane 

filter and micro-centrifuged at 14,000 x g for 5 min, with all preparations analyzed by 

HPLC (single injection of each sample) on the same analytical run date. 

As demonstrated in Figure 17, there were differences observed in the hypoxanthine 

concentrations from the same subject, with the serum (SST) samples generally higher in 

hypoxanthine concentrations.  A possible reason for observing the higher hypoxanthine 

levels when using serum (SST) can be caused by red blood cell hemolysis during 

preparation.  It is also known that hemolysis is a common occurrence when using serum 

samples (Arzoumanian, 2003) with another published article reporting significant 

differences between 10 of 17 plasma and serum measured analytes (Hrubec et al., 2002). 

When using the SST tube for collection, the BD package insert directions state to 

gently invert the tube 5 times and let the tube sit 30 min prior to centrifugation.  During 

this time period, the blood clots (as no anticoagulant is used) with a formed thrombus.  

With centrifugation, the formed thrombus remains near the bottom of the tube with the 
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Figure 17.  Bar chart depicting differences in hypoxanthine concentrations between plasma 

(lithium heparin) and serum (SST) from normal healthy individuals.  Overall, SST samples 

demonstrated ~19% positive bias relative to the plasma (lithium heparin) samples. 
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other matrix components migrating upwards and around the inert gel (found initially at the 

bottom of the tube but migrates upwards based on material density). 

It is feasible that during this clotting time and subsequent centrifugation step, that 

some red blood cells may leak some of its contents or hemolyze (rupture) due to 

mechanical deformation, which has been recently reported with RBC (Sprague et al., 2001, 

Sprague et al., 1996).  It has also been reported that inside red blood cells, ATP is typically 

found in significant amounts (mM levels) as the RBC also functions as an ATP storage 

vesicle (Dietrich et al., 2000).  If ATP is released from the RBC into the blood sample 

matrix, it is enzymatically converted several times to form hypoxanthine (Heptinstall et al., 

2005, Coade et al., 1989), which may cause falsely elevated hypoxanthine results (artifact). 

4.5 Other Cardiovascular Disease Matched Sample Set Evaluations 

 Further investigations into the effect of sample matrix were performed using 

additional commercially purchased matched sample sets (contract with ProMedDx for 

n=10 matched sets for each requested sample group).  For this study, additional normal 

healthy (non-symptomatic for ischemic cardiac disease) individual samples of plasma 

(heparin) and serum (no gel) were collected and frozen at -20°C.  The results of these 

additional normal individuals can be used for comparison to the results obtained in Section 

4.4 (i.e. healthy normals serum with gel (SST) versus healthy normals serum without gel). 

In addition, matched sample sets representing two cardiovascular disease states 

(e.g. hypertension, acute myocardial infarction) were also purchased from ProMedDx for 

evaluation to determine patient basal concentrations of inosine and hypoxanthine in these 

two cardiovascular disease states; however these matched sample sets were only available 
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in plasma (heparin) and serum (SST).  The plasma (lithium) and serum (SST) samples 

from hypertension and acute myocardial infarction patients were collected at a hospital in 

contractual agreement with ProMedDx with serum (SST) being the hospital normal sample 

protocol for collecting serum samples and the collected samples frozen at -20°C prior to 

HPLC-UV analysis.  Clinical diagnosis and demographic information (e.g. age, gender, 

medications) on patients with hypertension and acute myocardial infarction were provided 

by the hospital where the matched sample sets were obtained. 

Appendix D list the sample sets and HPLC-UV results for this section.  Several 

observations can be seen from the results.  The matched sets for normal healthy individuals 

had similar plasma and serum (without the inert gel, not SST) concentrations for inosine 

and hypoxanthine.  These results suggest that the initial results from using serum (SST) 

from normal healthy individuals may have gel contributed artifacts affecting the 

component concentrations (more notably hypoxanthine).  In addition, the matched set 

samples from hypertension and acute myocardial infarction had notable differences in 

plasma and serum (SST) concentrations, somewhat for inosine but mainly for 

hypoxanthine (mostly higher hypoxanthine results, but with some variable results in the 

acute myocardial infarction samples).  However, it is important to note that the hospital 

patient samples may also have medications which contribute to the observed phenomena. 

Based on these studies, it should be recommended that plasma (lithium heparin) be 

used as the sample collection matrix for the analysis of human hypoxanthine and inosine.  

While serum (without gel) appears to be an acceptable matrix, it does require waiting for 

30 min for the blood to clot prior to centrifugation, thereby adding to the total time from 
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patient sampling to analytical results to be returned from the clinical laboratory to the 

emergency room physician. 

The HPLC results from blood samples collected using different vacuutainer 

additives (e.g. lithium heparin, SST) may help to explain differences in hypoxanthine 

concentrations from the Kock et al. study (1994 article) and this research work.  Kock et al. 

reported no significant differences in hypoxanthine concentrations from their study 

patients (e.g. acute MI patients versus healthy controls), whereas this research reports 

significant differences from ED non-traumatic chest pain patients versus healthy normal 

individuals.  Two possible reasons may account for the reported differences in 

hypoxanthine concentrations. 

Firstly, the Koch et al. group used SST collection tubes and this study used lithium 

heparin for collecting plasma; thus the blood collection additives were different.  Secondly, 

Koch et al. did not use ED non-traumatic chest pain patients (non acute MI when the blood 

sample was drawn) for their study as were used in this research work.  Since there are no 

published kinetic studies of hypoxanthine in blood from non-traumatic chest pain or acute 

myocardial infarction patients, it is possible that the concentrations of hypoxanthine in the 

blood may be very different in these two groups of cardiac patients (e.g. patient chest pain 

is a typical symptomatic event preceding an acute myocardial infarction). 

When collecting blood from an individual, the choice of blood collection additives 

can be just as important as the analytical test method.  For this research, the differences 

between collecting plasma (lithium heparin) and SST from whole blood demonstrated 

variable hypoxanthine concentrations (artifacts).  For example, in Figure 17, a consistent 
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positive bias in hypoxanthine concentrations from SST samples relative to lithium heparin 

plasma samples from normal healthy individuals (called matched sets) was demonstrated.  

However variable hypoxanthine concentrations were observed in patients with heart 

disease conditions (e.g. PromedDx lithium heparin plasma and SST matched set samples 

representing hypertension (HT) and acute myocardial infarction (cTnI) patients are listed 

in Appendix D), which indicates that hypoxanthine concentration artifacts may occur if 

using SST collection tubes for hypoxanthine analysis. 

Thus, in order to obtain reproducible inter-laboratory hypoxanthine concentration 

results, lithium heparin should be used as the additive and not serum (SST), as the SST gel 

appears to cause spurious artifacts.  Artifacts using SST gels are not unique, as several 

other investigators have reported similar findings when using serum (SST) for their studies 

(e.g. progesterone, (Ferry et al., 1999); free triiodothyronine (FT3), Kilinc et al., 2002). 

4.6 Conclusion 

A sensitive and selective method has been developed for evaluation of inosine and 

hypoxanthine in human plasma.  The method employed a one step sample preparation for 

plasma (no organic solvents or solid phase extraction cartridges required) with high analyte 

recoveries, which eliminated the need for an internal standard.  In addition, this method 

utilized recently introduced HPLC monolithic column technology, which provided 

sufficient selectivity and sensitivity for measurement of these components.  Subject 

matched set sample evaluation indicated a consistent positive bias in hypoxanthine levels 

from use of SST collection tubes relative to plasma (heparin), thus the recommendation of 

using plasma (heparin) collection to eliminate any potential artifacts and reduce total 



 123

analysis time (serum and SST samples require ~30 min clotting time prior to 

centrifugation).  The method was employed without significant methodological problems 

in the evaluation of plasma samples obtained from healthy individuals and hospital 

emergency department patients presenting with non-traumatic chest pain with significant 

levels of both inosine and hypoxanthine effluxed from the patient samples.  These results, 

albeit from a small sample size (n=20 each group), further support the research hypothesis 

that these components may qualify as potential candidate biomarkers of acute cardiac 

ischemia. 

4.7 Acknowledgements 

I would like to acknowledge and thank Philip Morris USA, Richmond VA for the 

kind use of the HPLC-DAD equipment used for routine plasma measurements and for use 

of the LC-MS system for identification of inosine and hypoxanthine.  Cindy Blair of Philip 

Morris USA is kindly thanked for the logistics and procurement of supplies needed to 

support this research.  For providing initial plasma samples and such supportive 

encouragement, I thank Bill Wilson of Richmond HCA Hospitals (Chippenham Hospital, 

Department of Clinical Chemistry), Richmond VA USA following HIPAA regulations on 

patient confidentiality. 

I would also like to acknowledge the co-authors of the manuscript “An HPLC 

Method for Determination of Inosine and Hypoxanthine in Human Plasma from Healthy 

Volunteers and Patients Presenting with Potential Acute Cardiac Ischemia,” which is 

published in the Journal of Chromatography B (2007, 854, 158-164).  They are Dr. 

Domenic Sica1, Dr. Todd W.B. Gehr1, Mr. Bill Wilson3, Itaf Fakhry1, Terri Larus1, 



 124

Christine Farthing1, and Dr. H. Thomas Karnes 2 (1Department of Internal Medicine, 

Division of Nephrology, Clinical Pharmacology and Hypertension, 2Department of 

Pharmaceutics, VCU Medical Center, Virginia Commonwealth University, Richmond, VA 

23298, USA, 3Richmond HCA Hospitals, Richmond VA 23225, USA). 



 125

 

CHAPTER 5. Rapid Chemiluminescence Detection of Inosine and 

Hypoxanthine using Microplate Luminometer 
 
 
 
5.1 Introduction 

The goal of this chapter of research is the development of a rapid chemi-

luminescence test method for determination of inosine and hypoxanthine in human plasma.  

The purpose is to allow for rapid patient screening capability (diagnostic tool for acute 

cardiac ischemia) for potential use in hospital emergency department environments.  The 

luminescence method will be utilized on samples from healthy individuals and hospital 

patients with confirmed acute MI (hospital documented elevated levels of cTnT).  To be 

effective, the method will need to be rapid (defined as less than 10 min analysis time), 

sensitive and specific for inosine and hypoxanthine to reduce the potential errors in 

interpreting sample test results (e.g. goal is to minimize false positive and false negative 

results). 

 Currently, there are no published articles or U.S. patents for a rapid test method to 

determine inosine and hypoxanthine in plasma, which can meet the stringent sample 

turnaround time requirements of an emergency medical services (EMS) environment.  The 

rationale for using chemiluminescence technology over commonly used LC and 

immunoassay technologies are as follows:  LC and immunoassay methods are both very 

sensitive and specific techniques (e.g. monoclonal antibodies for immunoassay and mass 

spectrometer detection for LC); however, an LC-MS system is expensive to purchase and 
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operate, both techniques require technical expertise to perform, and both lack a rapid 

enough turnaround time needed by an EMS facility analyzing a priority “stat” type sample.  

However, a luminometer can measure chemiluminescent light, is relatively inexpensive to 

purchase, currently used in clinical labs (microplate capability), and can provide high 

component sensitivity. 

 Luminescence technology is well established with many instrument vendors (e.g. 

BMG LabTech Inc. Lumistar Optima (Durham, NC, USA), BioTek Synergy HT 

(Winooski, Vermont, USA), Thermo Fisher Scientific Luminoskan (Waltham, MA, USA)) 

and suppliers (e.g. Corning Life Sciences, Lowell, MA, USA) of luminescence supplies 

and reagents available worldwide.  It is known to be one of the most sensitive techniques, 

with one recent publication on its application for low ng/ml concentrations of ATP in 

human plasma [Gorman et al., 2007].  The high sensitivity of luminescence is primarily 

due to its high analyte signal to noise (s/n) ratio, with reported detection levels at low 

picogram and femtogram levels. 

To address biomarker specificity requirement, the developed luminescence test 

method will utilize biological enzymes purine nucleoside phosphorylase (PNP) and 

xanthine oxidase (XO), which are specific for enzymatic conversions of inosine and 

hypoxanthine, respectively.  The PNP enzyme converts inosine to hypoxanthine and XO 

converts hypoxanthine to xanthine, followed by XO conversion of xanthine to final 

product uric acid (in human species).  Each time XO reacts with one mole of 

hypoxanthine, and subsequently with one mole of xanthine, the metabolic by-products of 

each XO enzymatic turnover is the production of one mole of hydrogen peroxide and two 
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moles of superoxide anion radical (O2
-·), which both of these by-products can become 

substrates for luminescence type reactions.  Several commonly used luminescent materials 

(e.g. luminol (oxidation), lucigenin (reduction), and pholasin (oxidation)) were considered 

for this research.  If using luminol or lucigenin as the luminescent material, the hydrogen 

peroxide (which has both oxidizing and reducing capabilities) can react with the 

horseradish peroxidase (HRP) enzyme, luminol, and signal enhancers to generate 

measurable blue light ~ 450 nm, thus an amplification of signal effect (one mole of 

hypoxanthine and xanthine can generate two moles of hydrogen peroxide) (Figure 18). 

However, to achieve even greater sensitivity as low concentration (ng/ml or µM) 

levels of inosine and hypoxanthine are typically found in human plasma, another 

luminescence approach was investigated, which utilizes a highly sensitive photoprotein 

(pholasin®).  Since one mole of hypoxanthine will generate 4 moles of superoxide anion 

radicals (SAR) as a by-product of XO activity, using a chemiluminescent material that 

reacts with SAR should theoretically provide even more luminescence signal, thus 

potentially increasing the sensitivity twice fold over using the hydrogen 

peroxide/horseradish peroxidase/luminol approach.  One article cited pholasin having more 

than 100 fold sensitivity than lucigenin (Knight, 1997). 

Pholasin®, a photoprotein isolated from the bi-valve mollusk, has been reported to 

be a very sensitive chemiluminescent material (called lucidalin®) for SAR and other 

reactive oxygen species (ROS) such as the hydroxyl free radical (Knight, 1988).  Pholasin® 

has been extensively studied and patented by Knight Scientific, Plymouth, UK.  It is an 

approximately 34-36 kDa glycoprotein, which can be made excitable by several ROS,  
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Figure 18.  Diagram of enzymatic conversions of inosine and hypoxanthine components 

with generation of hydrogen peroxide as a by-product, which can react with luminol or 

lucigenin and HRP to generate visible blue light (chemiluminescence). 
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emitting blue-green light, and it has been reported to not have fluorescent properties.  The 

presence of SAR can react with the pholasin photoprotein to generate measurable light 

(~490 nm) (Figure 20), thus an amplification of signal effect (one mole of hypoxanthine 

can generate four moles of SAR), which should increase sensitivity and provide lower 

component detection limits.  The reaction of pholasin with SAR can be very quick (flash 

type technique, typically seconds) and may be made even more sensitive with use of signal 

enhancers (e.g. Adjuvant-k (proprietary) from Knight Scientific). 

 The Lumistar Optima Microplate Reader (BMG LabTech, Durham, NC, USA) was 

used for all luminescence evaluations.  The instrument has temperature control, supports 

the use of 96 well plates (opaque white) which were purchased from Corning Life Sciences 

(Lowell, MA, USA), and is capable of variable microplate mixing speeds with flash and 

glow luminescence capabilities.  The instrument is fitted with two direct injectors capable 

of rapid injections (e.g. 310 ul/sec), thus micropipetting assay reagents into the sample 

wells was automatically performed, which may help to reduce potential errors from manual 

pipetting. 

5.2 Experimental 

5.2.1 Chemicals, Reagents and Materials 

 Hypoxanthine, xanthine and ethyl alcohol (HPLC grade, denatured) were 

purchased from Acros Organics (Fair Lawn, NJ, USA).  Inosine, dibasic sodium hydrogen 

phosphate, and uric acid were purchased from Sigma-Aldrich (St. Louis, MO, USA).  

Enzymes xanthine oxidase (isolated from bovine milk, Grade III, ammonium sulfate 

suspension, enzymatic activity ~1.3 units/mg protein, storage temp 2-8°C), 
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Figure 20.  Diagram of typical reagent addition, injector time points and resulting pholasin 

emission (chemiluminescence). 
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purine nucleoside phosphorylase (isolated from human blood, lyophilized powder, 

enzymatic activity ~19 units/mg protein., storage -20°C) and uricase (isolated from 

Arthrobacter globiformis, lyophilized powder, ~19.7 units/mg protein, storage -20°C) were 

all purchased from Sigma-Aldrich. 

A commercial test kit used for antioxidant evaluations was purchased for initial 

setup of the luminometer and included an assay utilizing xanthine/xanthine oxidase plate 

mode kinetics (glow technique).  The kit included pholasin (50 µg), xanthine, xanthine 

oxidase [~10.25 mU/ml] and buffer (proprietary) for plate mode kinetics and was 

purchased from Knight Scientific (Plymouth, UK).  The luminometer instrument was 

qualified using the commercial antioxidant test kit and by successful replication of the 

xanthine/xanthine oxidase plate mode kinetics profile from Knight Scientific.  For all 

experiments following instrument qualification, the reagents and enzyme solutions were 

prepared accordingly.  Dibasic sodium hydrogen phosphate was used to prepare the 20 

mM assay buffer solution with ultrapure deionized water as the diluent (final pH 7.4 using 

concentrated phosphoric acid).  Ultrapure deionized water (~18 MΩ-cm) used for all 

reagent solutions was filtered (0.2 µm) prior to use. 

The luminometer rinse solution for the direct injector syringes was prepared using 

ethyl alcohol:deionized water mixture (75:25%, v/v).  Weekly rinses were performed to 

reduce potential material (e.g. protein and enzyme residue) buildup in the syringes, reagent 

tubing and injector needles.  Opaque 96 well microplates were purchased from Corning 

Life Sciences (Lowell, MA, USA) and stored in the dark at ambient temperature.  Blank 

human plasma (lithium anticoagulant) from one healthy volunteer (250 ml), an additional 
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six healthy volunteers plasma (lithium heparin) samples (1 ml each), and six patient’s 

plasma (lithium heparin) samples with confirmed acute MI (hospital reported elevated 

cTnT, 1 ml each) were purchased from ProMedDx (Norton, MA, USA) and stored at -

20°C prior to use. 

5.2.2 Preparation of Standards, Enzymes and Pholasin Solutions 

 Stock standards of inosine (25 µg/ml, 93.2 µM), hypoxanthine (25 µg/ml, 183.7 

µM), xanthine (25 µg/ml, 164.4 µM) and uric acid (25 µg/ml, 148.7 µM) were prepared in 

deionized water, stored at 4°C with stability greater than 3 months.  Working calibration 

standards for each component were prepared in deionized water immediately prior to use. 

For experiments, the working xanthine oxidase solution was prepared by pipetting 

40 µL of the aqueous stock XO (from bovine milk) suspension into 2.0 ml of assay buffer 

(pH 7.4) resulting in ~676 mU XO/ml.  The working XO solution was stable at ambient 

laboratory temperature (22°C) and could be stored at 4°C overnight with minimal loss in 

enzyme activity; however the working XO solution should not be stored frozen 

(e.g. -20°C), as a complete loss of enzyme activity was observed upon freeze-thaw and 

subsequent use. 

To prepare PNP and uricase solutions from solid and lyophilized purine nucleoside 

phosphorylase and uricase, 1.0 ml of assay buffer (pH 7.4) was pipetted directly into the 

vendor container bottle with gentle vortexing into solution.  After reconstitution using 1 ml 

of assay buffer (pH 7.4), the PNP stock concentration was ~18.7 Units PNP/ml and uricase 

stock concentration was ~110 Units uricase/ml.  A working solution of PNP [~701 mU 

PNP/ml] was prepared by pipetting 75 µL of the aqueous stock material into 2.0 ml of 
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assay buffer (pH 7.4).  A working solution of uricase [~1.1 U uricase/ml] was prepared by 

pipetting 20 µL of the aqueous stock material into 2.0 ml of assay buffer (pH 7.4).  Both 

working solutions of PNP and uricase were stable at ambient laboratory temperature and 

could be stored at 4°C overnight with minimal loss in enzyme activity. 

For preparation of the pholasin luminescent material, 5.0 ml of assay buffer (pH 

7.4) was pipetted directly into the vendor container bottle containing 50 µg pholasin with 

gentle vortexing, resulting in a ~10 µg/ml solution.  The prepared pholasin reagent was 

stable at ambient laboratory temperature and 4°C, and was stored protected from light to 

eliminate potential basal luminescence as it is an excitable photoprotein.  The reconstituted 

pholasin solution was transferred and stored in plastic screw top tubes (~1 ml aliquots 

stored at -20°C). 

5.2.3 Luminometer Equipment and Set Points 

The luminometer equipment consisted of a BMG LabTech Inc. Lumistar Optima 

and Optima software (version 2.1) (Durham, NC, USA) and Dell Optiplex 745 PC (Dell, 

TX, USA).  The luminometer was equipped with temperature control (8°C to 45°C), two 

direct injectors (minimum injection volume of 3 µl) with variable injection speeds (100 µ/s 

to 420 µ/s), and microplate shaking (orbital, linear, figure eight) capability.  The 

luminometer listed specifications for the limit of detection (<50 amol / well ATP), spectral 

range (240 – 740 nm) and dynamic range (9 decades).  All luminescence assays utilized 

opaque 96 well plates, an incubation temperature of 25°C, lens mode (no emission filter) 

and a photo-multiplier (PMT) gain setting of 3900 volts.  Equipment set points for all 

experiments in the flash mode are listed in Figure 21. 
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Figure 21.  BMG luminometer set points used for flash mode experiments. 
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5.2.4 Method Development and Optimization 

Development and optimization of the luminescence test method included 

evaluation of parameters such as determining hypoxanthine concentration level range, 

adjustment of XO enzyme concentration level to reduce analysis time, and enzyme 

incubation time (e.g. PNP) to maximize sensitivity and repeatability and to minimize 

turnaround time (<10 min analysis).  All plasma analysis utilized 20 µl of sample in a final 

microplate well volume of 200 µl (effectively making a 1:10 dilution of the plasma 

sample).  Potential endogenous interference (e.g. uric acid) was evaluated to determine 

quenching effects as this substance has antioxidant capacity and is typically found in 

plasma at high concentrations (e.g. 350-450 µM), especially in gout patients. 

The HPLC results from normal volunteers (ProMedDx plasma) and non-traumatic 

chest pain patients (Chippenham Hospital ED plasma) from Chapter 4 were used to 

estimate expected plasma concentrations of inosine and hypoxanthine for this chapter of 

research (Table 9).  Since the luminometer is a detection device and will not separate a 

mixture of components (as does HPLC), it was necessary to utilize the PNP enzyme and 

convert component inosine to hypoxanthine, and then measure the resulting total plasma 

hypoxanthine (inosine plus hypoxanthine) concentration.  Using the XO enzyme, 

hypoxanthine converts to xanthine, and xanthine to uric acid.  The luminometer measures 

the light signal generated from the XO reaction with hypoxanthine and xanthine (XO 

generates superoxide anion radicals which react with the luminescent material pholasin).  

Using a µg/ml to µM (micro molar) conversion table (Excel formula computations, Table 

10), a standard curve of hypoxanthine was prepared at concentration range of 
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Table 9.  Estimated inosine, hypoxanthine, xanthine and uric acid concentrations in healthy 

normal individuals and non-traumatic chest pain patients.  Values for normal individuals 

are based on published literature and the HPLC results using PromedDx healthy normal 

individuals.  Values for potential acute cardiac ischemia are from the HPLC results using 

Chippenham Emergency Department plasma (heparin) samples. 

 

Plasma Plasma
[ug/mL] [uM] Comments

Estimated lowest inosine level = 0.10 0.4
Estimated lowest hypoxanthine level = 0.10 0.7
Assume 100 % ino to hypo conv hypo = 1.1 Estimated levels (normals), n=20 from PromedDx

Estimated (normals) inosine level = 0.30 1.1
Estimated (normals) hypoxanthine level = 0.30 2.2

Assume 100 % ino to hypo conv hypo = 3.3 Estimated levels (normals) from Feng et al, Ther Drug Mon (2000) 22:177-183.

Estimated (ischemic) inosine level = 0.3 1.1 Lowest chest pain patient value
Estimated (ischemic) hypoxanthine level = 2.0 14.7

Assume 100 % ino to hypo conv hypo = 15.8 Ischemic (based on Chippenham ED data).

Estimated (ischemic) inosine level = 7.8 29.1 Highest chest pain patient value
Estimated (ischemic) hypoxanthine level = 9.7 71.3

Assume 100 % ino to hypo conv hypo = 100.3 Ischemic (based on Chippenham ED data).

Estimated (normals) xanthine level = 0.9 5.9 Estimated xanthine levels (normals) from Feng et al, Ther Drug Mon (2000) 22:177-183.

Estimated (normals) uric acid level = 60.0 356.9 Potential XO inhibitor and luminescence quenching (anti-oxidant).
Estimated (normals, high) uric acid level = 80.0 475.9 Potential XO inhibitor and luminescence quenching (anti-oxidant).
Estimated uric acid highest level (gout) = 100.0 594.8 Potential XO inhibitor and luminescence quenching (anti-oxidant).  
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Table 10.  Component µg/ml to µM conversion table. 
 
 

For Experiments Weight Volume Conc Conc  
Compound mg Ml µg/ml µM 
Adenosine 25.0 1000.0 25.0  93.6  

Inosine 25.0 1000.0 25.0  93.2  
Hypoxanthine 25.0 1000.0 25.0  183.7  

Xanthine 25.0 1000.0 25.0  164.4  
Uric Acid 25.0 1000.0 25.0  148.7  
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2.3 to 30.3 µM.  The initial hypoxanthine concentration range was set to focus on 

hypoxanthine concentrations to maximize the luminescence method sensitivity and detect 

concentration differences between healthy normal individuals and non-traumatic chest pain 

patients (e.g. ~3 µM for normal individual and ~15 µM for lowest observed chest pain 

patient).  Plasma samples above the highest standard can be diluted with deionized water.  

The initial range incorporated total inosine and hypoxanthine concentrations from both 

healthy normal individuals and non-traumatic chest pain patients (based on n=20 for each 

group from Chapter 4 research).  However it is important to note that this small set of 

plasma samples may not cover the entire range of hypoxanthine concentrations from a 

larger patient population, and further research work is necessary to optimize the 

hypoxanthine standard curve, as the goal of this chapter of research is the development of a 

rapid and simple method. 

Xanthine was found to be at a constant concentration (~6 µM) in both normal 

individuals and non-traumatic chest pain patient samples.  It is important to discuss why a 

standard curve of xanthine would not be used for this assay.  To prepare a standard curve 

of xanthine for computation of inosine and hypoxanthine concentrations would report 

erroneously low results, as xanthine only activates the XO enzyme once (xanthine to uric 

acid), whereas hypoxanthine activates the XO enzyme twice (hypoxanthine to xanthine to 

uric acid).  Since we are only interested in inosine and hypoxanthine concentrations for this 

research, and with xanthine levels constant, it was appropriate to prepare hypoxanthine 

standards (which incorporated total inosine to hypoxanthine conversion) for this research 

project. 
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Typical spreadsheets used for luminescence experiments on inosine, xanthine, and 

hypoxanthine evaluations include each reagent preparation, volume pipetted into the well, 

and target concentrations and are listed in Tables 11, 12, and 13, respectively.  Using the 

experimental spreadsheet for each component standard concentration range, plasma (20 µl) 

was pipetted into the microplate well with reagents (e.g. assay buffer, phosalin, PNP, 

uricase) either manually pipetted or injected using one direct injector; with the other direct 

injector used to inject the XO solution to start the reaction with pholasin and subsequent 

luminescence emission. 

5.2.5 Luminescence Computations 

All computations were performed using BMG Excel software (with built in 

macros) and data processing set points as defined by the method.  Figure 22 and 23 

represents a scan (plasma with 10 µM hypoxanthine) and the RLU tabulated results (e.g. 

BMG Excel Table 1, 2, and 3 in Figure 23) from raw data acquired over the analytical run 

and with data acquisition set at one data point per second.  The background (baseline) 

luminescence signal (labeled as Range 1 and presented in BMG Excel Table 1) can be 

caused by reagents (e.g. buffer, pholasin, PNP, plasma) and electronic noise and was 

calculated as the maximum RLU signal between scan times 100-118 seconds.  It would 

have been more appropriate to average the background RLU signal; however the BMG 

Excel software was written to have the same computation applied to both table ranges and 

does not currently allow the flexibility of independent computations on each individual 

table. 
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Table 11.  Typical spreadsheet used for inosine luminescence experiments. 

 

Final Inosine Conc. 
(200 ul well volume) Inosine Standard Inosine Pholasin 

Assay 
buffer PNP XO 

Total 
well 
volu
me 

[uM] (ul) WS [uM] (ul) (ul) (ul) (ul) (ul) 
0.0 0 0 50 70.0 40 40 200 
1.0 21.5 9.32 50 48.5 40 40 200 
2.5 53.6 9.32 50 16.4 40 40 200 
5.0 10.7 93.2 50 59.3 40 40 200 

10.0 21.5 93.2 50 48.5 40 40 200 
20.0 42.9 93.2 50 27.1 40 40 200 
30.0 64.4 93.2 50 5.6 40 40 200 

        
Example Plasma (ul)       

If plasma sample 1:10 dilution 20 0 50 50.0 40 40 200 
        
Notes:        
1.  Stock inosine [93.2 uM or 25 ug/ml] in DI.  Prepared by adding 25 mg in 1000 mL DI (or assay buffer). 
        
2.  Working stock (WS) WS-1 (9.32 uM) 100 ul stock inosine     
 (1:10 stock) 900 ul assay buffer     
        
3.  Final total inosine conc based on 200 ul well volume. 
        

4.  Pholasin conc [10 ug/ml]. 
Add 5 ml assay buffer to vial (50 ug pholasin from mollusca, Knight Scientific).   Store 
frozen. 

        
5.  XO conc [~676 mU XO / 
ml]. 

Pipet 40 ul stock (XO from bovine milk, Sigma) to 2 ml assay buffer.  Store 
refrigerated. 

        
6.  PNP conc [~701 mU PNP / 
ml]. 

Pipet 75 ul stock (PNP from human RBC, Sigma) to 2 ml assay buffer.  Store 
refrigerated. 
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Table 12.  Typical spreadsheet used for xanthine luminescence experiments. 

 
Final Xanthine Conc. 
(200 ul well volume) Xanthine 

Standard 
Xanthine Pholasin Assay buffer XO 

Total 
well 

volume 
[uM] (ul) WS [uM] (ul) (ul) (ul) (ul) 
0.0 0 0 50 110.0 40 200 
1.0 12.2 16.4 50 97.8 40 200 
2.5 30.5 16.4 50 79.5 40 200 
5.0 61.0 16.4 50 49.0 40 200 

10.0 12.2 164.4 50 97.8 40 200 
20.0 24.3 164.4 50 85.7 40 200 
30.0 36.5 164.4 50 73.5 40 200 

       
Example Plasma (ul)      

If plasma sample 1:10 dilution 20 0 50 90 40 200 
       
Notes:       
1.  Stock xanthine [164.4 uM or 25 ug/ml] in DI.  Prepared by adding 25 mg in 1000 mL DI (or assay buffer).  
       

2.  Working stock (WS) 
WS-1 (16.4 

uM) 100 ul stock xanthine    
 (1:10 stock) 900 ul assay buffer    
       
3.  Final xanthine conc based on 200 ul total well volume.     
       

4.  Pholasin conc [10 ug/ml]. 
Add 5 ml assay buffer to vial (50 ug pholasin from mollusca, Knight Scientific).   Store 
frozen. 

       

5.  XO conc [~676 mU XO / ml]. 
Pipet 40 ul stock (XO from bovine milk, Sigma) to 2 ml assay buffer. Store 
refrigerated. 
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Table 13.  Typical spreadsheet used for hypoxanthine luminescence experiments. 

 
Final Hypoxanthine 

Conc. 
(200 ul well volume) Hypoxanthine 

Standard 
Hypoxanthine Pholasin 

Assay 
buffer XO 

Total 
well 

volume 
[uM] (ul) WS [uM] (ul) (ul) (ul) (ul) 
0.0 0 0 50 110.0 40 200 
0.1 10.9 1.84 50 99.1 40 200 
0.2 21.8 1.84 50 88.2 40 200 
0.5 54.4 1.84 50 55.6 40 200 
1.0 10.9 18.37 50 99.1 40 200 
2.0 21.8 18.37 50 88.2 40 200 
5.0 5.4 183.7 50 104.6 40 200 

10.0 10.9 183.7 50 99.1 40 200 
       

Example Plasma (ul)      
If plasma sample 1:10 
dilution 20 0 50 90 40 200 

       
Notes:       
1.  Stock hypoxanthine [183.7 uM or 25 ug/ml] in DI.  Prepared by adding 25 mg in 1000 mL DI (or assay 
buffer).   
       
2.  Working stock (WS) WS-1 (18.37 uM) 100 ul stock hypoxanthine    
 (1:10 stock) 900 ul assay buffer    
       
 WS-2 (1.84 uM) 100 ul WS-1 hypoxanthine    
 (1:10 WS-1) 900 ul assay buffer    
       
3.  Final total hypoxanthine conc based on 200 ul well 
volume.      

       
4.  Pholasin conc [10 
ug/ml]. Add 5 ml assay buffer to vial (50 ug pholasin from mollusca, Knight Scientific).   Store frozen. 
       
5.  XO conc [~676 mU XO / 
ml]. Pipet 40 ul stock (XO from bovine milk, Sigma) to 2 ml assay buffer.  Store refrigerated. 

       
6.  Target range of nucleoside/purine assay (includes xanthine plus ino and hypo conversion to xanthine) is ~2 uM (normals) 
up to ~100 uM (ischemic). 
       
7.  Sensitivity and linearity of the nucleoside/purine assay (if 1:10 dilution of plasma) needs to be ~0.1 up to ~10 uM. 
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Figure 22.  Typical BMG output luminescence scan for sample analysis of 10 µM 

hypoxanthine in plasma.  Range one (background RLU measurement between 100 and 120 

sec) and range two (peak height RLU measurement between 120 sec and 222 sec). 
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Figure 23.  BMG Excel computations, method and data processing set points, and file 

name are documented for GLP compliance.  Results are reported in excel cells based on 

microplate sample well location (96 well plates). 
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The peak luminescence signal from the generation of light from pholasin (labeled 

as Range 2 and presented in BMG Excel Table 2) and superoxide anion radicals was 

calculated as the maximum RLU peak height signal between scan times 119-222 seconds.  

BMG Excel Table 3 represents the net RLU and is calculated by subtracting the 

background signal (BMG Excel Table 1) from the peak luminescent signal (BMG Excel 

Table 2).  The use of the peak height response of the RLU was used for the computations 

on these plasma samples, as some patient plasma samples RLU responses were very slow 

to return to background (baseline) RLU levels.  The cause of the slow RLU signal return to 

baseline is unknown, but may be due to patient medications (e.g. vasodilators, salicylic 

acid) used for treatment of acute MI patients. 

As this luminescence method was set up for rapid screening purposes on potential 

non-traumatic chest pain patient samples from the ED, it was not developed to be a 

quantitative assay as was the validated HPLC-UV method (Chapter 4).  However, the 

luminescence method needed to be rapid (<10 min analysis), sensitive (use 20 ul plasma), 

specific (use of enzymes) and have high precision (repeatability) to be useful in the ED 

environment.  This luminescence method was developed to compare the RLU differences 

between healthy normal individual plasma samples (negative control) and samples from 

ED non-traumatic chest pain patients that may be experiencing acute cardiac ischemia. 

A comparison was made of the net RLU value between the non-traumatic chest 

pain patient and negative control sample, using a calculated 99% RLU reference cut-off 

value generated from healthy normal individuals, as the decision making RLU cut-off 

level.  Determining the 99% RLU cut-off value (which is beyond the scope of this 
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research) would best be determined using a large number of healthy normal individuals 

(e.g. >>100)) and calculated using the RLU mean value plus the 2.326 standard deviations 

(α=0.01, one tail, 99% confidence interval), and would be used to determine whether the 

patient has acute cardiac ischemia causing the reported chest pain. 

For example, if a non-traumatic chest pain patient net RLU was similar to a 

negative control sample net RLU, then the patient was most likely not having an acute 

cardiac ischemic event, but had some other type of medical condition (e.g. anxiety, 

heartburn) causing the reported chest pain.  However, if a patient’s net RLU was above the 

99% RLU reference cut-off value for healthy normal individuals, then the patient was 

probably experiencing an acute cardiac ischemic event, and would require immediate 

medical attention, as it may lead to acute MI and potential adverse outcome. 

5.3 Results and Discussion 

To setup the new luminometer equipment, a standardized plate mode luminescence 

test kit was bought (ABEL 61M Antioxidant Test Kit, Knight Scientific, Ltd) which 

evaluates antioxidant capability using xanthine/xanthine oxidase and pholasin.  This test 

kit was used to qualify the new luminometer equipment using a standardized plate mode 

(glow technique).  However, method modifications were necessary as the plate mode 

analysis run time was approximately 30 min and had low sensitivity (Figure 24) as it is 

developed primarily for antioxidant and glow kinetic type studies, which would be 

insufficient for our research objective of a rapid and sensitive assay. 

Adjustments were made to the level of XO used for analysis to increase the 

reaction rate (flash mode) and the incubation time of PNP enzyme for plasma inosine 
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Figure 24.  Chart of relative light units (RLU) versus time (sec) for 30 µM xanthine/XO 

plate mode kinetics.  The profile demonstrates successful new equipment setup and 

operation using a commercial test kit for antioxidant evaluation (ABEL 61-M, Knight 

Scientific).  Two individual samples overlay with analysis time ~30 min. 
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conversion to hypoxanthine.  The starting level of XO enzyme level for the plate mode was 

approximately 10.25 mU/ml after reconstitution with assay buffer.  With adjustment of XO 

to increase the concentration, the final working concentration was approximately 676 

mU/ml.  This resulted in an analysis time reduction from approximately 30 min to 5 min 

(Figure 25).  Since the commercial kit from Knight Scientific (plate mode) was set up for 

xanthine/xanthine oxidase analysis and studies on material antioxidant capabilities, it was 

necessary to increase the XO level to additionally incorporate plasma hypoxanthine levels, 

but more importantly to reduce the time of analysis to under 10 min (i.e. switch from glow 

mode to flash mode kinetics). 

A standard curve of hypoxanthine was evaluated at concentrations from 2.3 to 30.3 

µM and demonstrated sufficient linearity (normal linear regression) with correlation 

coefficient >0.9990 (n=2).  The incubation time of purine nucleoside phosphorylase was 

evaluated at 60 and 120 second equilibration times using 10 μM inosine as the substrate 

with the monitoring of hypoxanthine level (Figure 26).  Therefore, the PNP incubation 

time should remain set at 120 sec to allow for complete inosine to hypoxanthine 

conversion, with subsequent XO injection to start the luminescence reaction.  For future 

work, one possible way to reduce the overall analysis time would be to add the PNP 

enzyme to the sample collection tube (e.g. BD vacuutainer), with inosine conversion then 

occurring during the whole blood to plasma centrifugation step.  If this centrifugation 

technique utilizing PNP in the vacuutainer results in complete inosine to hypoxanthine 

conversion, it would eliminate the need for the 120 sec PNP incubation time; and reduce 
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Figure 25. Chart demonstrating a significantly reduced analysis time by utilizing increased 

amounts of XO (from ~10.3 mU/ml to ~676 mU/ml) and continuous microplate mixing.  

Analysis time ~3.7 min. 
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Figure 26. Charts depicting inosine and PNP incubation time and conversion study.  

Evaluation of 60 and 120 sec PNP incubation times, with 120 sec demonstrating the 

complete conversion of inosine to hypoxanthine.  The 10 µM inosine with PNP conversion 

RLU responses (n=2) overlays completely against the 10 µM hypoxanthine standard. 
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the analysis time to only 30 seconds (assumes injection of XO at 0.1 sec and measurement 

of peak height RLU response). 

A study of the effect of plasma uric acid on luminescence response was performed.  

Since uric acid is found in plasma at relatively higher concentrations (normal range ~350-

475 µM) and is a known antioxidant, it was important to evaluate its potential effect on the 

luminescence signal.  As seen in Figure 27, the uric acid’s antioxidant affects decreases the 

luminescence signal (~50% quenching).  To address the uric acid, an experiment was 

performed using strong anion exchange (SAX) resin to remove organic anions from the 

plasma matrix.  Also seen in Figure 27 is a 1:100 dilution of plasma and subsequent use of 

the SAX pipet tip (Varian, Inc, CA, USA); both demonstrated that removal of potential 

interfering organic acids (e.g. urate at pH 7.4) resulted with an increase in luminescence 

response and sensitivity.  Since the blank plasma used had approximately 500 nM 

hypoxanthine, the 1:100 dilution using deionized water and subsequent use of SAX sorbent 

makes detection levels of hypoxanthine at the pM levels attainable. 

A second approach to eliminate the uric acid was to utilize uricase (~1.1 U/ml from 

Arthrobacter globiformis bacteria, Sigma, USA) during the PNP incubation time in an 

attempt to eliminate the endogenous uric acid.  As seen in Figure 28, it appears that the XO 

enzyme is deactivated (product inhibition) by the presence of large amounts of by-product 

hydrogen peroxide that is generated by uricase activity.  As one by-product of XO activity 

is the production of hydrogen peroxide, this finding was not completely surprising due to 

the effects of product inhibition on XO enzyme turnover.  One possible solution to 

eliminate the generated hydrogen peroxide is to use horseradish peroxidase, which 
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Figure 27. Charts demonstrating effects of uric acid (human physiological levels) on 

pholasin luminescence signal.  High levels of uric acid (in buffer) can quench the 

luminescence by more than 50%.  Treatment of plasma (1:100 dilution) and use of strong 

anion exchange (SAX) can reduce antioxidant effect on the luminescence signal and 

increase method sensitivity. 
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Figure 28. Chart demonstrating the effect of uricase on basal uric acid levels (normal 

healthy individual) and with fortification of 10 µM hypoxanthine.  The generation of 

hydrogen peroxide (by-product) from uricase enzymatic conversion of uric acid to 

allantoin caused XO inactivity (potentially from hydrogen peroxide product inhibition on 

XO effect). 
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catalyzes hydrogen peroxide to products water and oxygen, but this additional enzyme 

would only add to the complexity and cost of the analysis and therefore not evaluated. 

However, the use of the both uricase and SAX pipet tip technology to eliminate 

organic acids (e.g. uric acid) was probably not necessary to use, as differences in 

luminescence response between the healthy normal individuals and confirmed acute MI 

patients (elevated cTnT levels) was significant (t-test, α=0.05, p<0.01), when using the 

99% percentile (α=0.01, one tail, 2.326 standard deviations for n=6) as the calculated 

biomarker cut-off reference value for acute cardiac ischemia (Figure 29).  Even though this 

research utilized a small sample set for evaluation (n=6 for each group), the 99% cut-off 

for healthy normal individuals was 5,946 RLU, with all six cTnT patients clearly above 

this calculated decision point cut-off RLU level.  The luminescence method was optimized 

for rapid evaluation of hypoxanthine in plasma to potentially be used in an ED clinical type 

environment.  For this research study, method parameters such as calibration, repeatability 

and limit of detection were evaluated using hypoxanthine standards. 

The method demonstrated linearity from 2.3-30.3 µM hypoxanthine in assay buffer 

(R=0.9990, n=2) (Figure 30).  This range covered the low and midpoint total hypoxanthine 

concentrations of samples from HPLC analysis of healthy individuals and non-traumatic 

chest pain patients (Figure 16), and focused on the potential biomarker cut-off 

concentration for this small group of samples (n=20).  Repeatability (n=3) was evaluated 

by fortification of plasma at basal (~0.5 µM) and 1.5 µM hypoxanthine concentrations 

(final well levels) and demonstrated by consistent RLU overlays (Figure 31). 
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Figure 29.  Charts demonstrating healthy normal individuals and patients with confirmed 

acute MI (hospital documented elevated levels of cTnT).  All cTnT patient samples RLU 

response were clearly above the calculated 99% cut-off reference value (5,944 RLU) for 

healthy normal individuals (n=6 for each group).  HPLC values for total hypoxanthine 

(from Chapter 4) and cTnT values (from ProMedDx) are listed in the legend. 
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Figure 30.  Hypoxanthine standard curve in assay buffer ranging from 2.3 to 30.3 µM 

demonstrating sufficient linearity and back-calculated hypoxanthine concentrations. 
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Figure 31.  Charts demonstrating repeatability of the luminescence assay.  Healthy normal 

individual (basal level, ~0.5 µM hypoxanthine) and fortified sample (1.5 µM 

hypoxanthine) assayed three consecutive times.  Overlay of profiles demonstrate plasma 

sample repeatability. 
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5.4 Conclusion 

 A rapid luminescence method was developed for the detection of inosine and 

hypoxanthine in human plasma.  Using only 20 ul of plasma (heparin) and instrument 

direct injectors, the method allowed for the rapid (<5 min) detection of total hypoxanthine 

(as inosine is converted to hypoxanthine using enzyme PNP) concentrations, which may 

potentially be used as a biomarker of acute cardiac ischemia.  The use of a hypothetical 

cut-off level (e.g. 99% confidence) relative luminescence unit (RLU) for decision making 

(i.e. positive level, negative level) may be the most effective use of this rapid screening 

assay.  The method was utilized for evaluation of plasma samples from healthy individuals 

and cardiac patients with confirmed acute myocardial infarction (hospital documented 

elevated plasma cTnT levels), and demonstrated the potential of this rapid assay to be used 

as a diagnostic tool, for use by emergency department services personnel on non-traumatic 

chest pain patients suspected of undergoing acute cardiac ischemia. 
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CHAPTER 6. Summary Research Conclusions and Potential Limitations 
 

 
 
 

With cardiovascular disease (e.g. acute myocardial infarction (MI)) being one of 

the leading causes of mortality in the world, a rapid patient assessment, diagnosis and 

treatment is important to improving patient outcomes.  This research investigation focused 

on the use of endogenous plasma levels of inosine (hypoxanthine precursor) and 

hypoxanthine, as a potential diagnostic tool for use in the evaluation of emergency 

department non-traumatic chest pain patients.  The research was divided into three phases 

with highlighted research goals as follows:  Phase I. Animal (mouse) experiments to 

identify potential biomarker(s) and demonstrate biomarker proof-of-concept and disease 

condition (acute cardiac ischemia); Phase II. Evaluation of healthy normal individuals and 

ED non-traumatic chest pain patients plasma samples for the identified biomarker(s) from 

Phase I studies; Phase III. Development of a sensitive and rapid clinical assay (<10 min 

analysis goal) for detection of inosine and hypoxanthine in human plasma. 

Phase I research utilized the ICR mouse model for all experiments.  Briefly, the 

mice were anaesthetized; hearts removed and isolated onto a Langendorff apparatus, with 

Krebs buffer solution providing physiological nutrients.  For ischemic conditions, the 

isolated heart experiments consisted of 30 min stabilization, 20 min zero-flow global 

ischemia, followed by 30 min of Krebs buffer reperfusion.  Time-matched studies were 

carried out for control (non-ischemic) and test (ischemic) experimental groups.  Upon heart 
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reperfusion, approximately 1.5 ml samples of the Krebs buffered perfusate from isolated 

mouse hearts were collected at time-points (0, 1, 3, 5, 10 and 20 min) and stored frozen (-

20°C) until analysis.  An HPLC-UV method was developed and validated for sample 

analysis with LC-MS used for biomarker identification.  Results from this phase of 

research demonstrated the significant increase in levels of inosine (t-test, p<0.05) and 

elevated levels of hypoxanthine from isolated mouse hearts undergoing 20 min acute 

global ischemia relative to the non-ischemia control group. 

An evaluation of the effects of salicylic acid (SA) in Krebs buffer solution was 

made, as aspirin (ASA, salicylic acid precursor) is used as part of the initial treatment for 

patients suspected of undergoing acute MI, to reduce platelet formation at the site of the 

thrombus (clot).  Results of mouse hearts undergoing 20 min acute global ischemia and 

exposure to 0.1 and 1.0 mM SA concentrations both demonstrated a potentiation of 

effluxed inosine from the affected heart tissue.  As any further work using SA was beyond 

the scope of this research project, however it is strongly recommended that additional 

research using animal models are performed on the apparent adverse effects of ASA and 

SA on ATP catabolism under conditions of acute cardiac ischemia.  Knowing how 

widespread ASA is used for other medical treatments (e.g. analgesia, rheumatoid arthritis) 

and the possibility of those patients one day experiencing an acute cardiac ischemic event, 

supports the recommendation of further research on aspirin and its metabolite, salicylic 

acid on ATP catabolism. 

Phase II research evaluated plasma samples representing healthy normal 

individuals and local hospital emergency department non-traumatic chest pain patients.  
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Samples were evaluated using a modified and validated HPLC-UV method from Phase I 

studies.  An evaluation of sample collection (matched subject sets of plasma (heparin) and 

serum separator tube (SST) samples) was performed to determine if inosine and 

hypoxanthine component differences exist between these two frequently used blood 

collection techniques.  Results of this phase of research demonstrated elevated amounts of 

hypoxanthine concentrations (~19% positive bias) from blood samples collected using SST 

tubes, relative to the collection of plasma (heparin).  The use of the anticoagulant heparin 

for obtaining blood samples for these test procedures is recommended; as it eliminates the 

potential positive bias in hypoxanthine concentrations, and it ultimately saves time (SST 

requires a recommended clotting time of 30 min prior to the centrifugation step).  

Significant differences (t-test, p<0.05) were found for plasma concentrations of inosine and 

hypoxanthine detected from emergency department patients presenting with non-traumatic 

chest pain relative to healthy normal individuals. 

Phase III research focused on the initial development of a rapid (<10 min analysis 

goal) luminescence assay for plasma inosine and hypoxanthine, to potentially be used in 

hospital clinical laboratory or point-of-care environments.  Briefly, the assay utilized 20 ul 

plasma with enzymes purine nucleoside phosphorylase (PNP) used for conversion of 

plasma inosine to hypoxanthine, and xanthine oxidase (XO) used for conversion of 

hypoxanthine to xanthine, and xanthine to uric acid.  One metabolic by-product of the XO 

enzymatic conversion is the generation of highly reactive superoxide anion radicals, which 

can react with pholasin® (a photoprotein) to generate blue-green light measurable using a 

luminometer. 
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The luminescence assay was utilized for rapid detection of plasma concentrations 

of inosine and hypoxanthine obtained from healthy normal individuals and hospital acute 

MI patients (hospital documented elevated cTnT plasma levels).  Using a calculated 99th 

RLU (relative luminescence unit) percentile reference cut-off level from the healthy 

normal individuals (n=6), all six acute MI patients with elevated levels of cTnT had 

hypoxanthine levels above the 99th RLU percentile cut-off level.  These results, although 

having limited data (n=6 for each group), demonstrate the potential utility of using total 

hypoxanthine (inosine plus hypoxanthine levels) as a biomarker of cardiac ischemic 

conditions and the luminescence method as a rapid, simple and sensitive measurement 

technique. 

 For evaluation of human plasma samples, the use of the HPLC-UV or microplate 

luminometer both demonstrated the necessary sensitivity and specificity for determination 

of inosine and hypoxanthine components in human plasma.  However, each technique 

offered certain specific advantages on its particular use.  The HPLC-UV technique offers 

complete separation and quantification of each component of interest without interferences 

from endogenous uric acid, but the analytical run time of approximately 20 min may be too 

long, if used in a hospital emergency department environment.  The luminometer 

technique offered a rapid analysis (<5 min), which is ideal for the emergency department 

environment, but it does not individually measure inosine and hypoxanthine components, 

and may have potential interferences (e.g. high plasma uric acids in gout patients or 

individuals which may take antioxidant type GNC supplements such as ascorbic acid or 
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polyphenols) that quench the luminescence emission from pholasin (i.e. signal suppression 

with potential false negative results). 

 Since biomarker sensitivity and specificity are important parameters to evaluate, it 

is important to briefly discuss them relative to this research project’s results.  Total 

hypoxanthine (inosine and hypoxanthine combined) is found endogenously in the body 

from normal purine metabolism, thus making the specificity of using total hypoxanthine as 

a biomarker of acute cardiac ischemia low, as it is not totally specific to heart tissue (as are 

the cardiac troponins).  However, under patient conditions of acute cardiac ischemia, the 

increase in ATP catabolic by-products found in the bloodstream can certainly be attributed 

to the heart cell mitochondria’s inability to produce sufficient amounts of ATP; thus 

ultimately resulting in the efflux of ATP catabolic by-products inosine and hypoxanthine 

out of the heart tissue and into the bloodstream.  This higher concentration level of total 

hypoxanthine (inosine and hypoxanthine) and the ED patient’s chief complaint of non-

traumatic chest pain; potentially indicates an acute cardiac ischemic condition and warrants 

immediate medical treatment.  It should be mentioned that total hypoxanthine plasma 

levels may also be significantly elevated from other potential ischemic conditions (e.g. 

ischemic stroke, angina). 

For biomarker sensitivity, luminescence technology is one of the most sensitive 

analytical techniques currently available, and the results from Phase III demonstrated 

sufficient sensitivity for total hypoxanthine in normal healthy individuals and cTnT 

patients, even without plasma sample treatment (no extractions or preparation steps were 

necessary).  The recently FDA cleared IMA test for cardiac ischemia has the same 
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biomarker properties (low specificity, high sensitivity), and was approved to be used in 

conjunction with other test (ECG and cardiac troponin) to improve patient diagnostic 

accuracy.  Our proposed candidate biomarker may follow the same path as the FDA 

cleared IMA biomarker; however it should be emphasized that one major difference 

between these two biomarkers is the albumin that is modified from the ischemic heart 

tissue is found in the bloodstream, and not effluxed from the cardiac tissue itself (thus the 

low specificity).  From the findings of this research, the total hypoxanthine levels that are 

found elevated from acute cardiac ischemic conditions would be effluxed from the affected 

heart issue into the bloodstream, thus potentially making hypoxanthine a more specific 

biomarker than IMA for acute cardiac ischemia. 

 Some other potential sources of error in test results are shown in Table 14.  

Individuals born with enzyme deficiencies (e.g. adenosine deaminase (ADA), purine 

nucleoside phosphorylase) may cause erroneous results (e.g. false negative and false 

positive results), however these individuals should also have immunological problems 

which are associated with these enzyme deficiencies, and therefore communicated to 

emergency department personnel as part of obtaining the patient medical history. 

Kidney disease and kidney failure are two medical conditions which may lead to 

potential errors in inosine and hypoxanthine test results.  As elimination of most 

substances from the blood stream is severely compromised in these patient populations, 

even small polar components such as inosine and hypoxanthine may be retained in the 

blood stream, leading to elevated blood concentrations and potential false positive results.  

Kidney disease typically requires chronic treatments (e.g. medication) and individuals 
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Table 14.  Listing of enzyme deficiencies, food sources and medical conditions which 

many contribute to errors in interpreting test results. 

Potential Errors in Results 

• ADA Deficiency - ↑ Adeno, ↓ Ino and ↓ Hypo 
(causes immune problems) – potential false negative 
 
• PNP Deficiency - ↑ Ino, ↓ Hypo (causes immune problems) – 
potential false positive 
 
• XO Deficiency - ↑ Xan, slight ↑  Hypo (may cause kidney problems) 
 
• Kidney failure or disease 
 
• Food sources containing purines – organ meats, mushrooms, 
spinach, yeast, peas, beer 
 
• Inosine – GNC (enhance athletic performance) 
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having this disease are typically aware of their medical condition.  However, kidney failure 

may occur acutely from a traumatic event (e.g. acute kidney failure resulting from a ladder 

fall), with the individual unaware of an acute kidney failure condition that can rapidly lead 

to a significant buildup of waste products in their blood stream (thus leading to potential 

erroneous test results).  Individuals with XO deficiency or taking allopurinol (medication 

commonly used for gout treatment), should have elevated levels of xanthine in the blood 

potentially causing false positive results.  Other sources of exogenous purines that may 

cause potential errors in test results; would be from a high consumption of purine 

containing food sources (e.g. organ meats, spinach, and beer) and the use of GNC 

supplements (e.g. inosine advertised to enhance athletic performance). 

 In conclusion, it has been demonstrated using our animal model that inosine, a 

potential biomarker of acute cardiac ischemia, was significantly effluxed from isolated 

mouse hearts undergoing 20 min acute global ischemia (Phase I results).  The significant 

levels of effluxed inosine may best be explained by the acute cardiac ischemic event, 

which causes ATP by-product catabolism and the formation and efflux of inosine by the 

affected cardiac tissue (proof-of-biology).  Subsequent work (Phase II), using human 

plasma samples obtained from hospital emergency department patients with non-traumatic 

chest pain, indicated elevated levels of inosine and significant levels of hypoxanthine 

(inosine metabolism occurs immediately in red blood cells), thus supporting the results 

from Phase I studies. 

In Phase III and finishing the research project objectives, the development of a 

potential clinical assay was achieved to rapidly measure inosine and hypoxanthine levels 



 168

using only 20 µl of human plasma, in less than 5 minutes.  As there are more than 10 

medical conditions that may cause non-traumatic chest pain (e.g. angina, anxiety, 

heartburn, acid reflux, etc.), it would benefit emergency medical service providers to have 

additional biomarker(s) of acute cardiac ischemia and a rapid clinical diagnostic assay to 

assist in patient diagnosis to either rule-in (RIMI) or rule-out (ROMI) acute MI.  The 

results of this work may one day help to answer the medical communities request for 

additional biomarker(s) of acute cardiac ischemia, and ultimately lead to prompter 

treatment for the millions of non-traumatic chest pain patients that visit hospital emergency 

departments every year. 
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APPENDIX A 
 

Poster presented at the 29th International Symposium on High Pressure Liquid Phase 

Separations and Related Techniques (Stockholm, Sweden, June 2005). 
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Poster presented at Pittcon 2006 Analytical Exposition (Orlando, Florida, March 2006). 
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APPENDIX C 
 

Virginia Commonwealth University (VCU) IRB Application and Approval Forms. 
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Farthing IRB #4336 Research Synopsis 

I. Title:  Evaluation of Potential Biomarker(s) in Human Plasma for Initial Cardiac 

Ischemia 

II. Investigators:  Dr. Domenic Sica M.D., Don Farthing (Graduate Student) 

III. Hypothesis:  Our hypothesis is that endogenous inosine (purine) may be present in 

human plasma from the catabolism of ATP in ischemic heart tissue.  Therefore, inosine 

may be a potential biomarker of initial human cardiac ischemia prior to heart tissue 

necrosis (protein biomarkers released). 

IV.     Specific Aims:  Our specific aim of this research is to determine if inosine is present 

in plasma samples from patients that were admitted for treatment of myocardial infarction 

(MI).  If inosine is present in patients diagnosed and treated for MI (test) and is not present 

in plasma samples from patients without MI (control), we will pursue developing a 

possible point-of-care technique to determine inosine levels in plasma. 

V.     Background and Significance:  Each year in the US, approximately 7-8 million 

patients arrive with non-traumatic chest pain to hospital emergency rooms.  Medical 

personnel are challenged to properly diagnose and treat these patients.  It is estimated that 

approximately 2-5% of these patients are experiencing myocardial infarction, but due to 

misdiagnosis, they are incorrectly discharged leading to medical malpractice.  Thus, 

emergency medical services to patients would benefit by having a biomarker to help 

differentiate initial cardiac ischemic conditions from other noncardiac illnesses, which also 
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may cause chest pain (e.g. GERD, heartburn, asthma, gallstones, pneumonia, and 

pancreatitis). 

VI.      Preliminary Progress/Data Report:  Initial animal experiments were performed 

during 2003-2004 at VCU (Dr. Lei Xi, IACUC #0405-2957, Dept. of Internal Medicine, 

Div. of Cardiology) using the ICR outbred mouse strain.  The mice were anaesthetised, 

hearts surgically removed and isolated for experiments using a Langendorff system.  The 

hearts were perfused using Krebs buffered solution at pH 7.4 and contained 

95%O2:5%CO2.  Global cardiac ischemia was initiated by adjusting the Krebs solution to a 

zero flow rate for 20 min.  Upon heart reperfusion with 95%O2:5%CO2, samples of Krebs 

solution eluant from the heart were collected at predetermined times and frozen prior to 

HPLC analysis.  For HPLC analysis, 100 µL of the collected sample was injected neat, 

using chromatography conditions consisting of a C18 reversed phase column, gradient 

mobile phase and diode array detection. 

VII.   Preliminary animal test results from above initial research indicated that inosine 

may be a potential biomarker indicative of initial mouse cardiac ischemia.  Inosine and 

xanthine-like products (e.g. hypoxanthine, xanthine and uric acid) were found at higher 

levels in mice subjected to global cardiac ischemia versus non-ischemic conditions.  These 

results can be explained by ischemic myocytes undergoing nucleotide purine catabolism in 

the absence of oxygen, which activates normally dormant cellular enzymes and generates 

degradative products (e.g. adenosine, inosine, hypoxanthine and xanthine) from the 

breakdown of ATP. 
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VIII. Research Method & Design:  As part of my Ph.D. thesis (D. Farthing, MCV 

graduate student, Dept. of Pharmaceutics), I am requesting IRB approval to obtain existing 

plasma samples from cardiovascular (ischemic) diseased patients that have received 

treatment from VCU Medical Center Hospitals.  These patients were diagnosed with 

myocardial infarction and subsequently treated at VCU Medical Center Hospitals.  All 

plasma samples (25 from non-ischemic patients (controls) and 25 from ischemic patients 

(tests)) will be obtained from patients previously admitted for medical treatment.  The 

plasma samples (frozen and obtained from the Dept. of Clinical Chemistry) will be 

stripped of any patient information on the sample tubes for compliance with current patient 

privacy laws (HIPPA).  The samples will be coded as control or test samples (e.g. 

numbered 1-25) by Dept. of Clinical Chemistry personnel who have been trained on 

HIPPA regulations.  Human plasma samples obtained will be extracted and evaluated for 

inosine levels using a developed HPLC method at an MCV laboratory (Dr. Domenic Sica, 

Dept. of Internal Medicine, Division of Clinical Pharmacology).  The results and 

interpretation of these experiments will likely be submitted for publication in a scientific 

journal (e.g. Clinical Chemistry) and used as part of D. Farthing’s Ph.D. thesis.  I am 

requesting an expedited review from Federal Regulations for the Protection of Human 

Subjects (45 CFR 46) based on the following reason.  All plasma samples obtained will be 

existing samples that were initially used for patient diagnostic information. 

IX. Statistical Analysis:  Statistical analysis is not applicable as inosine from the pateint’s 

ischemic cardiac tissue will either be present or not present in the plasma samples.  The 

reason for this all or nothing expectation is that the biological half-life of inosine has been 
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published to be approximately one minute in humans so it may be completely metabolised 

and not detected.  However, if detected, it may indicate that inosine is a potential 

biomarker of initial human cardiac ischemia prior to heart tissue necrosis. 

X.      Data and Safety Monitoring:  Not applicable 

XI.      Human Subjects Instructions:  Not applicable 
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APPENDIX D 
 
Additional plasma purchased from ProMedDx and evaluated using HPLC. 

     Ino Hypo      
Sample 
Type Matrix 

ProMedDx 
# Gender Age [µM] [µM] Comments        

Ctrl-1 
Plasma (Li 
Heparin) 10372009 M 51 <0.9 <1.8 Normals (PromedDx)    

Ctrl-1 Serum (no gel)    <0.9 <1.8 "     

Ctrl-2 
Plasma (Li 
Heparin) 10372011 M 50 <0.9 1.5 "     

Ctrl-2 Serum (no gel)    <0.9 1.3 "     

Ctrl-3 
Plasma (Li 
Heparin) 10372018 M 20 <0.9 2.2 "     

Ctrl-3 Serum (no gel)    <0.9 2.1 "     

Ctrl-4 
Plasma (Li 
Heparin) 10372020 M 34 <0.9 1.9 "     

Ctrl-4 Serum (no gel)    <0.9 1.9 "     

Ctrl-5 
Plasma (Li 
Heparin) 10372026 M 49 <0.9 1.5 "     

Ctrl-5 Serum (no gel)    <0.9 2.0 "     

Ctrl-6 
Plasma (Li 
Heparin) 10372027 M 18 <0.9 3.4 "     

Ctrl-6 Serum (no gel)    <0.9 4.6 "     

Ctrl-7 
Plasma (Li 
Heparin) 10372028 M 38 <0.9 1.3 "     

Ctrl-7 Serum (no gel)    <0.9 1.3 "     

Ctrl-8 
Plasma (Li 
Heparin) 10372030 M 38 <0.9 <1.8 "     

Ctrl-8 Serum (no gel)    <0.9 <1.8 "     

Ctrl-9 
Plasma (Li 
Heparin) 10372032 M 43 <0.9 1.5 "     

Ctrl-9 Serum (no gel)    <0.9 1.5 "     

Ctrl-10 
Plasma (Li 
Heparin) 10372035 M 38 <0.9 <1.8 "     

Ctrl-10 Serum (no gel)       <0.9 <1.8 "        

HT-1 
Plasma (Li 
Heparin) 10417810 F 25 <0.9 2.2 Hypertension (PromedDx)    

HT-1 Serum SST    0.7 7.8 Patients BP 210/105, Hct   

HT-2 
Plasma (Li 
Heparin) 10417811 M 44 <0.9 2.9 "     

HT-2 Serum SST    0.8 25.8 " BP 150/104, Glipizide   

HT-3 
Plasma (Li 
Heparin) 10417814 F 30 <0.9 2.0 "     

HT-3 Serum SST    3.6 12.5 " BP 180/98, Tenormin   

HT-4 
Plasma (Li 
Heparin) 10425962 F 43 <0.9 7.3 "     

HT-4 Serum SST    <0.9 25.8 " BP 150/110, Tenormin   

HT-5 
Plasma (Li 
Heparin) 10425963 F 37 <0.9 1.1 "     

HT-5 Serum SST    <0.9 3.8 " BP 160/102, Tenormin   
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HT-6 
Plasma (Li 
Heparin) 10425964 F 52 <0.9 2.5 "     

HT-6 Serum SST    <0.9 11.4 " BP 165/103, Hct   

HT-7 
Plasma (Li 
Heparin) 10425965 F 39 <0.9 5.9 "     

HT-7 Serum SST    <0.9 30.0 " BP 175/82, Hct   

HT-8 
Plasma (Li 
Heparin) 10425966 M 29 <0.9 1.3 "     

HT-8 Serum SST    0.7 12.8 " BP 160/89, Lotensin   

HT-9 
Plasma (Li 
Heparin) 10425968 F 45 <0.9 1.4 "     

HT-9 Serum SST    3.6 14.9 " BP 148/98, Hct   

HT-10 
Plasma (Li 
Heparin) 10425971 F 25 <0.9 0.8 "     

HT-10 Serum SST       2.4 13.7 " BP 140/98, Hct and Lisinopril  

cTnI-1 
Plasma (Li 
Heparin) 11075181 F 86 3.6 21.7 MI Patients (PromedDx)    

cTnI-1 Serum SST    0.9 9.1 " cTnI 0.4 ug/L   

cTnI-2 
Plasma (Li 
Heparin) 11075182 M 86 5.3 3.3 "     

cTnI-2 Serum SST    4.4 6.3 " 0.5    

cTnI-3 
Plasma (Li 
Heparin) 11075183 F 71 <0.9 7.2 "     

cTnI-3 Serum SST    <0.9 7.2 " 0.8    

cTnI-4 
Plasma (Li 
Heparin) 11075186 F 74 <0.9 6.2 "     

cTnI-4 Serum SST    <0.9 7.4 " 0.4    

cTnI-5 
Plasma (Li 
Heparin) 11075187 F 90 1.0 7.3 "     

cTnI-5 Serum SST    0.8 13.7 " 0.6    

cTnI-6 
Plasma (Li 
Heparin) 11075189 F 59 <0.9 9.7 "     

cTnI-6 Serum SST    2.0 9.2 " 0.5    

cTnI-7 
Plasma (Li 
Heparin) 11075193 F 54 <0.9 4.6 "     

cTnI-7 Serum SST    1.2 19.8 " 0.9    

cTnI-8 
Plasma (Li 
Heparin) 11107700 F 49 <0.9 33.6 "     

cTnI-8 Serum SST    <0.9 10.9 " 0.6    

cTnI-9 
Plasma (Li 
Heparin) 11109491 M 90 <0.9 12.7 "     

cTnI-9 Serum SST    <0.9 4.1 " 31.9    

cTnI-10 
Plasma (Li 
Heparin) 11109492 F 54 <0.9 31.2 "     

cTnI-10 Serum SST    <0.9 14.3 " 1.1    
            

Notes:            
1. ProMedDX (Norton, MA), a FDA registered biorepository with all samples acquired following IRB approval.    
2. Ino= Inosine, Hypo= hypoxanthine, HT = hypertension, cTnI = cardiac tropoinin I.     
3. Plasma and serum samples evaluated on same analytical run using calibration curve (DI standards) and controls (plasma).   
4. HT and cTnI samples from same hospital, using SST tubes (gel) and following package insert (clotting and spin time, centrifugal force 
etc). (per PromedDx). 
5. Controls from normal donor collection center using red top serum tubes (no gel) per PromedDx.     
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