10 research outputs found
Gemüseanbau im Hochhaus: Das Projekt Brick Born Farming beschäftigt sich mit innovativen Anbaukonzepten
Wissenschaftler sind weltweit bereits seit geraumer Zeit darum bemüht, Lösungen für die praktikable Umsetzung einer urbanen Produktion frischer Gemüse zu erarbeiten. Die hydroponischer Anbauverfahren haben ein überdurchschnittlich hohes Potential, wenn es um die Einsparung von Produktionsmitteln geht. So können im Pflanzenbau gegenüber dem Freilandanbau bis zu 90 Prozent des eingesetzten Wassers durch geschlossene Kreisläufe eingespart werden. Diese Kreisläufe vermeiden zudem den Eintrag von Düngemittel in die Umwelt. Der geschützte Anbau in Hochhäusern sorgt für ein optimales Pflanzenwachstum ohne ungünstige Witterungseinflüsse. So ist nicht nur eine sichere marktnahe Produktion gewährleistet, es kann auch das ganze Jahr hindurch produziert werden. Transporte von Produkten aus weit entfernten Gegenden anderer Länder können somit vermieden werden. Hinzu kommt die Flächenersparnis und die damit hohe Flächenproduktivität führen. Dennoch zeigen erste Umsetzungsversuche auf, dass es noch einen hohen Grad an Forschungs- und Entwicklungsarbeit bedarf bis eine profitable Lösung für den Markt bereit steht. Insbesondere der hohe technische Aufwand und Energiebedarf erster Testanlagen sind hier als besondere Herausforderung anzusehen. In dem umfassend angelegten Forschungs- und Entwicklungsvorhaben mit dem Namen BrickBorn Farming – Nahrungsmittelproduktion in Gebäuden städtischer Gebiete sollen verschiedenste Aspekte weiterentwickelt und miteinander verknüpft werden
Dezentrale Energieversorgung: Dezentrale Energieversorgung für die Landwirtschaft und den ländlichen Raum
Die Energiewende ist in aller Munde. Doch zu einfach ist der Gedanke es gehe nur um Wind, Photovoltaik und Biogas. Im Landwirtschaftsbetrieb müssen alle Energieerzeuger und –verbraucher intelligent miteinander gekoppelt und verwoben werden. Bestenfalls kann Energie – in welcher Form auch immer – an den ländlichen Raum abgegeben werden. Die vorliegende Schriftenreihe stellt reale Betriebseispiele für die Landwirtschaft vor. Interessierte Landwirte können hier Anregungen zur fossilfreien energetischen Umgestaltung ihres Betriebes finden.
Redaktionsschluss: 30.09.202
Gemüseanbau im Hochhaus: Das Projekt Brick Born Farming beschäftigt sich mit innovativen Anbaukonzepten
Wissenschaftler sind weltweit bereits seit geraumer Zeit darum bemüht, Lösungen für die praktikable Umsetzung einer urbanen Produktion frischer Gemüse zu erarbeiten. Die hydroponischer Anbauverfahren haben ein überdurchschnittlich hohes Potential, wenn es um die Einsparung von Produktionsmitteln geht. So können im Pflanzenbau gegenüber dem Freilandanbau bis zu 90 Prozent des eingesetzten Wassers durch geschlossene Kreisläufe eingespart werden. Diese Kreisläufe vermeiden zudem den Eintrag von Düngemittel in die Umwelt. Der geschützte Anbau in Hochhäusern sorgt für ein optimales Pflanzenwachstum ohne ungünstige Witterungseinflüsse. So ist nicht nur eine sichere marktnahe Produktion gewährleistet, es kann auch das ganze Jahr hindurch produziert werden. Transporte von Produkten aus weit entfernten Gegenden anderer Länder können somit vermieden werden. Hinzu kommt die Flächenersparnis und die damit hohe Flächenproduktivität führen. Dennoch zeigen erste Umsetzungsversuche auf, dass es noch einen hohen Grad an Forschungs- und Entwicklungsarbeit bedarf bis eine profitable Lösung für den Markt bereit steht. Insbesondere der hohe technische Aufwand und Energiebedarf erster Testanlagen sind hier als besondere Herausforderung anzusehen. In dem umfassend angelegten Forschungs- und Entwicklungsvorhaben mit dem Namen BrickBorn Farming – Nahrungsmittelproduktion in Gebäuden städtischer Gebiete sollen verschiedenste Aspekte weiterentwickelt und miteinander verknüpft werden
Gemüseanbau im Hochhaus: Das Projekt Brick Born Farming beschäftigt sich mit innovativen Anbaukonzepten
Wissenschaftler sind weltweit bereits seit geraumer Zeit darum bemüht, Lösungen für die praktikable Umsetzung einer urbanen Produktion frischer Gemüse zu erarbeiten. Die hydroponischer Anbauverfahren haben ein überdurchschnittlich hohes Potential, wenn es um die Einsparung von Produktionsmitteln geht. So können im Pflanzenbau gegenüber dem Freilandanbau bis zu 90 Prozent des eingesetzten Wassers durch geschlossene Kreisläufe eingespart werden. Diese Kreisläufe vermeiden zudem den Eintrag von Düngemittel in die Umwelt. Der geschützte Anbau in Hochhäusern sorgt für ein optimales Pflanzenwachstum ohne ungünstige Witterungseinflüsse. So ist nicht nur eine sichere marktnahe Produktion gewährleistet, es kann auch das ganze Jahr hindurch produziert werden. Transporte von Produkten aus weit entfernten Gegenden anderer Länder können somit vermieden werden. Hinzu kommt die Flächenersparnis und die damit hohe Flächenproduktivität führen. Dennoch zeigen erste Umsetzungsversuche auf, dass es noch einen hohen Grad an Forschungs- und Entwicklungsarbeit bedarf bis eine profitable Lösung für den Markt bereit steht. Insbesondere der hohe technische Aufwand und Energiebedarf erster Testanlagen sind hier als besondere Herausforderung anzusehen. In dem umfassend angelegten Forschungs- und Entwicklungsvorhaben mit dem Namen BrickBorn Farming – Nahrungsmittelproduktion in Gebäuden städtischer Gebiete sollen verschiedenste Aspekte weiterentwickelt und miteinander verknüpft werden
Greenhouse Module for Space System: A Lunar Greenhouse Design
In the next 10 to 20 years humankind will return to the Moon and/or travel to Mars. It is likely that astronauts will eventually build permanent settlements there, as a base for long-term crew tended research tasks. It is obvious that the crew of such settlements will need food to survive. With current mission architectures the provision of food for longduration missions away from Earth requires a significant number of resupply flights. Furthermore, it would be infeasible to provide the crew with continuous access to fresh produce, specifically crops with high water content such as tomatoes and peppers, on account of their limited shelf life. A greenhouse as an integrated part of a planetary surface base would be one solution to solve this challenge for long-duration missions. Astronauts could grow their own fresh fruit and vegetables in-situ to be more independent from supply from Earth. This paper presents the results of the design project for such a greenhouse, which was carried out by DLR and its partners within the framework of the Micro-Ecological Life Support System Alternative (MELiSSA) program. The consortium performed an extensive system analysis followed by a definition of system and subsystem requirements for greenhouse modules. Over 270 requirements were defined in this process. Afterwards the consortium performed an in-depth analysis of illumination strategies, potential growth accommodations and shapes for the external structure. Five different options for the outer shape were investigated, each of them with a set of possible internal configurations. Using the Analytical Hierarchy Process, the different concept options were evaluated and ranked against each other. The design option with the highest ranking was an inflatable outer structure with a rigid inner core, in which the subsystems are mounted. The inflatable shell is wrapped around the core during launch and transit to the lunar surface. The paper provides an overview of the final design, which was further detailed in a concurrent engineering design study. During the study, the subsystem parameters (e.g. mass, power, performance) were calculated and evaluated. The results of the study were further elaborated, leading to a lunar greenhouse concept that fulfils all initial requirements. The greenhouse module has a total cultivation area of more than 650 m² and provides more than 4100 kg of edible dry mass over the duration of the mission. Based on the study, the consortium also identified technology and knowledge gaps (not part of this paper), which have to be addressed in future projects to make the actual development of such a lunar greenhouse, and permanent settlements for long-term human-tended research tasks on other terrestrial bodies, feasible in the first place
Greenhouse Module for Space System: A Lunar Greenhouse Design
In the next 10 to 20 years humankind will return to the Moon and/or travel to Mars. It is likely that astronauts will eventually build permanent settlements there, as a base for long-term crew tended research tasks. It is obvious that the crew of such settlements will need food to survive. With current mission architectures the provision of food for long-duration missions away from Earth requires a significant number of resupply flights. Furthermore, it would be infeasible to provide the crew with continuous access to fresh produce, specifically crops with high water content such as tomatoes and peppers, on account of their limited shelf life. A greenhouse as an integrated part of a planetary surface base would be one solution to solve this challenge for long-duration missions. Astronauts could grow their own fresh fruit and vegetables in-situ to be more independent from supply from Earth. This paper presents the results of the design project for such a greenhouse, which was carried out by DLR and its partners within the framework of the Micro-Ecological Life Support System Alternative (MELiSSA) program.
The consortium performed an extensive system analysis followed by a definition of system and subsystem requirements for greenhouse modules. Over 270 requirements were defined in this process. Afterwards the consortium performed an in-depth analysis of illumination strategies, potential growth accommodations and shapes for the external structure. Five different options for the outer shape were investigated, each of them with a set of various possible internal configurations. Using the Analytical Hierarchy Process, the different concept options were evaluated and ranked against each other. The design option with the highest ranking was an inflatable outer structure with a rigid inner core, in which the subsystems are mounted. The inflatable shell is wrapped around the core during launch and transit to the lunar surface.
The paper provides an overview of the final design, which was further detailed in a concurrent engineering design study. During the study, the subsystem parameters (e.g. mass, power, performance) were calculated and evaluated. The results of the study were further elaborated, leading to a lunar greenhouse concept that fulfils all initial requirements. The greenhouse module has a total cultivation area of more than 650 m² and provides more than 4.100 kg of edible dry mass over the duration of the mission.
Based on the study, the consortium also identified technology and knowledge gaps (not part of this paper), which have to be addressed in future projects to make the actual development of such a lunar greenhouse, and permanent settlements for long-term human-tended research tasks on other terrestrial bodies, feasible in the first place
Dezentrale Energieversorgung: Dezentrale Energieversorgung für die Landwirtschaft und den ländlichen Raum
Die Energiewende ist in aller Munde. Doch zu einfach ist der Gedanke es gehe nur um Wind, Photovoltaik und Biogas. Im Landwirtschaftsbetrieb müssen alle Energieerzeuger und –verbraucher intelligent miteinander gekoppelt und verwoben werden. Bestenfalls kann Energie – in welcher Form auch immer – an den ländlichen Raum abgegeben werden. Die vorliegende Schriftenreihe stellt reale Betriebseispiele für die Landwirtschaft vor. Interessierte Landwirte können hier Anregungen zur fossilfreien energetischen Umgestaltung ihres Betriebes finden.
Redaktionsschluss: 30.09.202
Dezentrale Energieversorgung: Dezentrale Energieversorgung für die Landwirtschaft und den ländlichen Raum
Die Energiewende ist in aller Munde. Doch zu einfach ist der Gedanke es gehe nur um Wind, Photovoltaik und Biogas. Im Landwirtschaftsbetrieb müssen alle Energieerzeuger und –verbraucher intelligent miteinander gekoppelt und verwoben werden. Bestenfalls kann Energie – in welcher Form auch immer – an den ländlichen Raum abgegeben werden. Die vorliegende Schriftenreihe stellt reale Betriebseispiele für die Landwirtschaft vor. Interessierte Landwirte können hier Anregungen zur fossilfreien energetischen Umgestaltung ihres Betriebes finden.
Redaktionsschluss: 30.09.202