39 research outputs found

    A CUPID Li2100MoO4scintillating bolometer tested in the CROSS underground facility

    Get PDF
    A scintillating bolometer based on a large cubic Li2100MoO4 crystal (45 mm side) and a Ge wafer (scintillation detector) has been operated in the CROSS cryogenic facility at the Canfranc underground laboratory in Spain. The dual-readout detector is a prototype of the technology that will be used in the next-generation 0¿2ß experiment CUPID . The measurements were performed at 18 and 12 mK temperature in a pulse tube dilution refrigerator. This setup utilizes the same technology as the CUORE cryostat that will host CUPID and so represents an accurate estimation of the expected performance. The Li2100MoO4 bolometer shows a high energy resolution of 6 keV FWHM at the 2615 keV ¿ line. The detection of scintillation light for each event triggered by the Li2100MoO4 bolometer allowed for a full separation (~8s) between ¿(ß) and a events above 2 MeV . The Li2100MoO4 crystal also shows a high internal radiopurity with 228Th and 226Ra activities of less than 3 and 8 µBq/kg, respectively. Taking also into account the advantage of a more compact and massive detector array, which can be made of cubic-shaped crystals (compared to the cylindrical ones), this test demonstrates the great potential of cubic Li2100MoO4 scintillating bolometers for high-sensitivity searches for the 100Mo 0¿2ß decay in CROSS and CUPID projects

    Perspectives of lowering CUORE thresholds with Optimum Trigger

    Get PDF
    CUORE is a cryogenic experiment that focuses on the search of neutrinoless double beta decay in 130Te and it is located at the Gran Sasso National Laboratories. Its detector consists of 988 TeO2 crystals operating at a base temperature of ~10 mK. It is the first ton-scale bolometric experiment ever realized for this purpose. Thanks to its large target mass and ultra-low background, the CUORE detector is also suitable for the search of other rare phenomena. In particular the low energy part of the spectra is interesting for the detection of WIMP-nuclei scattering reactions. One of the most important requirements to perform these studies is represented by the achievement of a stable energy threshold lower than 10 keV. Here, the CUORE capability to accomplish this purpose using a low energy software trigger will be presented and described

    Status and prospects of discovery of 0νββ decay with the CUORE detector

    Get PDF
    In this contribution we present the achievements of the CUORE experiment so far. It is the first tonne-scale bolometric detector and it is in stable data taking since 2018. We reached to collect about 1800 kg×yr of exposure of which more than 1ton×year have been analysed. The CUORE detector is meant to search for the neutrinoless double β decay (0νββ) of the 130Te isotope. This is a beyond Standard Model process which could establish the nature of the neutrino to be Dirac or a Majorana particle. It is an alternative mode of the two-neutrinos double β decay, a rare decay which have been precisely measured by CUORE in the 130Te. We found no evidence of the 0νββ and we set a Bayesian lower limit of 2.2×1025yr on its half-life. The expertise achieved by CUORE set a milestone for any future bolometric detector, including CUPID, which is the planned next generation experiment searching for 0νββ with scintillating bolometers

    Measurement of the 2νββ Decay Half-Life of Te 130 with CUORE

    Get PDF
    We measured two-neutrino double beta decay of Te130 using an exposure of 300.7 kg yr accumulated with the CUORE detector. Using a Bayesian analysis to fit simulated spectra to experimental data, it was possible to disentangle all the major background sources and precisely measure the two-neutrino contribution. The half-life is in agreement with past measurements with a strongly reduced uncertainty: T1/22ν=7.71-0.06+0.08(stat)-0.15+0.12(syst)×1020 yr. This measurement is the most precise determination of the Te130 2νββ decay half-life to date

    Results from the CUORE experiment

    Get PDF
    Neutrinoless double beta decay (0¿ßß) is a rare, second-order nuclear transition that occurs only if neutrinos are massive Majorana particles or through new physics beyond Standard Model. This process explicitly violates the lepton number (L) by two units and, therefore, the observation of 0¿ßß would demonstrate that L is not a symmetry of nature. Combined with flavour mixing and cosmological measurements, it can provide unique contraints on neutrino mass scale and establish whether neutrinos are Dirac or Majorana particles. The Cryogenic Underground Observatory for Rare Events (CUORE) is an experiment located at the LNGS searching for 0¿ßß decay of 130Te. CUORE exploits the bolometric technique to reach high resolution around the Q-value (2527.5 keV). It consists of an array of 988 natural TeO2 cubic crystals grouped into 19 towers. With a total active mass of 742 kg (~206 kg of 130Te), CUORE is operated at very low temperature with a new 3He/4He refrigerator. Data taking started at the beginning of 2017. After a brief introduction on the detector and the way data analysis is performed, I describe CUORE first results for the search of the 0¿ßß decay that were published in March 2018

    The CUORE experiment at LNGS

    No full text
    Since the discovery of neutrino, many of its properties have been studied. The flavor oscillations recently revealed that, contrary to the Standard Model assumptions, neutrinos have a finite mass. Other neutrino characteristics are still to be investigated, such as its Dirac or Majorana nature: Experiments are currently searching for a rare phenomenon, the neutrinoless double beta decay (0νββ), whose observation would solve this issue. The Cryogenic Underground Observatory for Rare Events (CUORE) at Gran Sasso National Laboratories focuses on the search of 130Te 0νββ and it is the first ton-scale bolometric experiment ever realized for this purpose. The detector is hosted inside a custom cryostat and consists of 988 TeO2 crystals, operated at a temperature of ∼ 10 mK. The CUORE goals in 5 years of data taking are an energy resolution of 5 keV FWHM and a background level of 0.01 counts/keV/kg/y in the 130Te 0νββ region of interest. This corresponds to a sensitivity on the 130Te 0νββ half life of T 1/2 = 9 • 1025 y (90% C.L.) and an upper limit to the effective Majorana mass of 50-130 meV. The CUORE commissioning has been recently completed; the experiment has just concluded the pre-operation phase and data taking is currently ongoing

    Study on the contributions to the CUORE energy spectra

    No full text
    CUORE is a cryogenic experiment searching for the neutrinoless double beta decay of 130Te, and it is located at the underground Gran Sasso National Laboratories in the centre of Italy. With its 988 TeO2 crystals, operating at a base temperature of ∼10 mK, CUORE is the first ton-scale and ultra-low background bolometric experiment ever realized for this purpose. There are many phenomena that contribute to the CUORE energy spectra, such as 2vβ β decay, cosmic rays and materials and environmental radioactivity: Disentangle these contributions is of fundamental importance for a correct interpretation of the results. In this poster, some relevant aspect of the CUORE background study is presented

    Perspectives of lowering CUORE thresholds with Optimum Trigger

    No full text
    corecore