21 research outputs found

    Effective field theory approach to Casimir interactions on soft matter surfaces

    Full text link
    We utilize an effective field theory approach to calculate Casimir interactions between objects bound to thermally fluctuating fluid surfaces or interfaces. This approach circumvents the complicated constraints imposed by such objects on the functional integration measure by reverting to a point particle representation. To capture the finite size effects, we perturb the Hamiltonian by DH that encapsulates the particles' response to external fields. DH is systematically expanded in a series of terms, each of which scales homogeneously in the two power counting parameters: \lambda \equiv R/r, the ratio of the typical object size (R) to the typical distance between them (r), and delta=kB T/k, where k is the modulus characterizing the surface energy. The coefficients of the terms in DH correspond to generalized polarizabilities and thus the formalism applies to rigid as well as deformable objects. Singularities induced by the point particle description can be dealt with using standard renormalization techniques. We first illustrate and verify our approach by re-deriving known pair forces between circular objects bound to films or membranes. To demonstrate its efficiency and versatility, we then derive a number of new results: The triplet interactions present in these systems, a higher order correction to the film interaction, and general scaling laws for the leading order interaction valid for objects of arbitrary shape and internal flexibility.Comment: 4 pages, 1 figur

    Curvature-coupling dependence of membrane protein diffusion coefficients

    Full text link
    We consider the lateral diffusion of a protein interacting with the curvature of the membrane. The interaction energy is minimized if the particle is at a membrane position with a certain curvature that agrees with the spontaneous curvature of the particle. We employ stochastic simulations that take into account both the thermal fluctuations of the membrane and the diffusive behavior of the particle. In this study we neglect the influence of the particle on the membrane dynamics, thus the membrane dynamics agrees with that of a freely fluctuating membrane. Overall, we find that this curvature-coupling substantially enhances the diffusion coefficient. We compare the ratio of the projected or measured diffusion coefficient and the free intramembrane diffusion coefficient, which is a parameter of the simulations, with analytical results that rely on several approximations. We find that the simulations always lead to a somewhat smaller diffusion coefficient than our analytical approach. A detailed study of the correlations of the forces acting on the particle indicates that the diffusing inclusion tries to follow favorable positions on the membrane, such that forces along the trajectory are on average smaller than they would be for random particle positions.Comment: 16 pages, 8 figure

    Equilibrium shapes of flat knots

    Get PDF
    We study the equilibrium shapes of prime and composite knots confined to two dimensions. Using rigorous scaling arguments we show that, due to self-avoiding effects, the topological details of prime knots are localised on a small portion of the larger ring polymer. Within this region, the original knot configuration can assume a hierarchy of contracted shapes, the dominating one given by just one small loop. This hierarchy is investigated in detail for the flat trefoil knot, and corroborated by Monte Carlo simulations.Comment: 4 pages, 3 figure

    Dynamic phase separation of fluid membranes with rigid inclusions

    Full text link
    Membrane shape fluctuations induce attractive interactions between rigid inclusions. Previous analytical studies showed that the fluctuation-induced pair interactions are rather small compared to thermal energies, but also that multi-body interactions cannot be neglected. In this article, it is shown numerically that shape fluctuations indeed lead to the dynamic separation of the membrane into phases with different inclusion concentrations. The tendency of lateral phase separation strongly increases with the inclusion size. Large inclusions aggregate at very small inclusion concentrations and for relatively small values of the inclusions' elastic modulus.Comment: 6 pages, 6 figure

    Membrane-mediated interactions

    Full text link
    Interactions mediated by the cell membrane between inclusions, such as membrane proteins or antimicrobial peptides, play important roles in their biological activity. They also constitute a fascinating challenge for physicists, since they test the boundaries of our understanding of self-assembled lipid membranes, which are remarkable examples of two-dimensional complex fluids. Inclusions can couple to various degrees of freedom of the membrane, resulting in different types of interactions. In this chapter, we review the membrane-mediated interactions that arise from direct constraints imposed by inclusions on the shape of the membrane. These effects are generic and do not depend on specific chemical interactions. Hence, they can be studied using coarse-grained soft matter descriptions. We deal with long-range membrane-mediated interactions due to the constraints imposed by inclusions on membrane curvature and on its fluctuations. We also discuss the shorter-range interactions that arise from the constraints on membrane thickness imposed by inclusions presenting a hydrophobic mismatch with the membrane.Comment: 38 pages, 10 figures, pre-submission version. In: Bassereau P., Sens P. (eds) Physics of Biological Membranes. Springer, Cha

    Radial Sizing of Lipid Nanotubes Using Membrane Displacement Analysis

    Get PDF
    We report a novel method for the measurement of lipid nanotube radii. Membrane translocation is monitored between two nanotube-connected vesicles, during the expansion of a receiving vesicle, by observing a photobleached region of the nanotube. We elucidate nanotube radii, extracted from SPE vesicles, enabling quantification of membrane composition and lamellarity. Variances of nanotube radii were measured, showing a growth of 40-56 nm, upon increasing cholesterol content from 0 to 20%

    Pore dynamics in lipid membranes

    No full text
    Transient circular pores can open in plasma membrane of cells due to mechanical stress, and failure to repair such pores lead to cell death. Similar pores in the form of defects also exist among smectic membranes, such as in myelin sheaths or mitochondrial membranes. The formation and growth of membrane defects are associated with diseases, for example multiple sclerosis. A deeper understanding of membrane pore dynamics can provide a more refined picture of membrane integrity-related disease development, and possibly also treatment options and strategies. Pore dynamics is also of great importance regarding healthcare applications such as drug delivery, gene or as recently been implied, cancer therapy. The dynamics of pores significantly differ in stacks which are confined in 2D compared to those in cells or vesicles. In this short review, we will summarize the dynamics of different types of pores that can be observed in biological membranes, which include circular transient, fusion and hemi-fusion pores. We will dedicate a section to floral and fractal pores which were discovered a few years ago and have highly peculiar characteristics. Finally, we will discuss the repair mechanisms of large area pores in conjunction with the current cell membrane repair hypotheses

    Repair of large area pores in supported double bilayers

    No full text
    We describe an experimental system where we can generate, and subsequently close, multiple large membrane ruptures in supported double bilayers. We show in this study for the first time that large membrane pores (similar to 10-150 mu m in size) in flat phospholipid vesicles can be reduced in size or completely closed by a pore edge tension driven area reduction mechanism. We can dynamically control the membrane tension of a flat giant unilamellar vesicle and its interplay with the surface adhesion to a solid support. Adhesion to the support surface causes increased membrane tension, which eventually relaxes by the formation of several pores in the membrane. We show that the tension propagation time tau(max) is exceptionally long in this system, which allows for simultaneous opening of multiple pores. The pores can be stabilized by Ca2+-mediated pinning sites in the interior of the flat giant unilamellar vesicle. After pore formation followed by pinning, we depleted Ca2+ ions resulting in removal of pinning and relaxation of membrane tension. This allows the pore to close, driven by the pore edge tension

    Thermal migration of molecular lipid films as a contactless fabrication strategy for lipid nanotube networks

    No full text
    We demonstrate the contactless generation of lipid nanotube networks by means of thermally induced migration of flat giant unilamellar vesicles (FGUVs), covering micro-scale areas on oxidized aluminum surfaces. A temperature gradient with a reach of 20 mm was generated using a focused IR laser, leading to a surface adhesion gradient, along which FGUVs could be relocated. We report on suitable lipid-substrate combinations, highlighting the critical importance of the electrostatic interactions between the engineered substrate and the membrane for reversible migration of intact vesicles
    corecore