919 research outputs found

    Status of the CUORE and CUORE-0 experiments at Gran Sasso

    Get PDF
    CUORE is a 741 kg array of TeO2 bolometers for the search of neutrinoless double beta decay in 130Te. The detector is being constructed at the Laboratori Nazionali del Gran Sasso, Italy, where it will start taking data in 2015. If the target background of 0.01 counts/(keV·kg·y) will be reached, in five years of data taking CUORE will have a half life sensitivity of ∌ 1026 y. CUORE-0 is a smaller experiment constructed to test and demonstrate the performances expected for CUORE. The detector is a single tower of 52 CUORE-like bolometers that started taking data in spring 2013. The status and perspectives of the CUORE and CUORE-0 experiments will be presented

    Focal Cerebral Infarction in Newborn: Description of Three Cases:

    Get PDF
    We observed 3 full-term newborns with focal ischemic injury of the middle cerebral artery (MCA), in which diagnosis of MCA stroke was suspected by US and confirmed by CT scan and MRI. A four-year follow-up was carried out to study the effect of neonatal stroke on neurodevelopmental outcome. All children had a history of pre-perinatal risk factors: neonatal cerebral infarction in term infants, in fact, has many possible causes, including bacterial meningitis, inherited or acquired coagulopathies, trauma and hypoxia-ischemia. The prognosis of neonatal MCA infarction depends on early diagnosis, on the CNS plasticity mechanism and, finally, on medical therapy and neuropsychological rehabilitation

    New experimental limits on the alpha decays of lead isotopes

    Full text link
    For the first time a PbWO4 crystal was grown using ancient Roman lead and it was run as a cryogenic detector. Thanks to the simultaneous and independent read-out of heat and scintillation light, the detector was able to discriminate beta/gamma interactions with respect to alpha particles down to low energies. New more stringent limits on the alpha decays of the lead isotopes are presented. In particular a limit of T_{1/2} > 1.4*10^20 y at a 90% C.L. was evaluated for the alpha decay of 204Pb to 200Hg

    New application of superconductors: high sensitivity cryogenic light detectors

    Get PDF
    In this paper we describe the current status of the CALDER project, which is developing ultra-sensitive light detectors based on superconductors for cryogenic applications. When we apply an AC current to a superconductor, the Cooper pairs oscillate and acquire kinetic inductance, that can be measured by inserting the superconductor in a LC circuit with high merit factor. Interactions in the superconductor can break the Cooper pairs, causing sizable variations in the kinetic inductance and, thus, in the response of the LC circuit. The continuous monitoring of the amplitude and frequency modulation allows to reconstruct the incident energy with excellent sensitivity. This concept is at the basis of Kinetic Inductance Detectors (KIDs), that are characterized by natural aptitude to multiplexed read-out (several sensors can be tuned to different resonant frequencies and coupled to the same line), resolution of few eV, stable behavior over a wide temperature range, and ease in fabrication. We present the results obtained by the CALDER collaboration with 2x2 cm2 substrates sampled by 1 or 4 Aluminum KIDs. We show that the performances of the first prototypes are already competitive with those of other commonly used light detectors, and we discuss the strategies for a further improvement

    Characterization of the KID-Based Light Detectors of CALDER

    Full text link
    The aim of the Cryogenic wide-Area Light Detectors with Excellent Resolution (CALDER) project is the development of light detectors with active area of 5×55\times5 cm2^2 and noise energy resolution smaller than 20 eV RMS, implementing phonon-mediated kinetic inductance detectors. The detectors are developed to improve the background suppression in large-mass bolometric experiments such as CUORE, via the double read-out of the light and the heat released by particles interacting in the bolometers. In this work, we present the characterization of the first light detectors developed by CALDER. We describe the analysis tools to evaluate the resonator parameters (resonant frequency and quality factors) taking into account simultaneously all the resonance distortions introduced by the read-out chain (as the feed-line impedance and its mismatch) and by the power stored in the resonator itself. We detail the method for the selection of the optimal point for the detector operation (maximizing the signal-to-noise ratio). Finally, we present the response of the detector to optical pulses in the energy range of 0-30 keV

    TeO2_2 bolometers with Cherenkov signal tagging: towards next-generation neutrinoless double beta decay experiments

    Get PDF
    CUORE, an array of 988 TeO2_2 bolometers, is about to be one of the most sensitive experiments searching for neutrinoless double-beta decay. Its sensitivity could be further improved by removing the background from α\alpha radioactivity. A few years ago it has been pointed out that the signal from ÎČ\betas can be tagged by detecting the emitted Cherenkov light, which is not produced by α\alphas. In this paper we confirm this possibility. For the first time we measured the Cherenkov light emitted by a CUORE crystal, and found it to be 100 eV at the QQ-value of the decay. To completely reject the α\alpha background, we compute that one needs light detectors with baseline noise below 20 eV RMS, a value which is 3-4 times smaller than the average noise of the bolometric light detectors we are using. We point out that an improved light detector technology must be developed to obtain TeO2_2 bolometric experiments able to probe the inverted hierarchy of neutrino masses.Comment: 5 pages, 4 figures. Added referee correction

    Energy resolution and efficiency of phonon-mediated Kinetic Inductance Detectors for light detection

    Get PDF
    The development of sensitive cryogenic light detectors is of primary interest for bolometric experiments searching for rare events like dark matter interactions or neutrino-less double beta decay. Thanks to their good energy resolution and the natural multiplexed read-out, Kinetic Inductance Detectors (KIDs) are particularly suitable for this purpose. To efficiently couple KIDs-based light detectors to the large crystals used by the most advanced bolometric detectors, active surfaces of several cm2^2 are needed. For this reason, we are developing phonon-mediated detectors. In this paper we present the results obtained with a prototype consisting of four 40 nm thick aluminum resonators patterned on a 2×\times2 cm2^2 silicon chip, and calibrated with optical pulses and X-rays. The detector features a noise resolution σE=154±7\sigma_E=154\pm7 eV and an (18±\pm2)%\% efficiency.Comment: 5 pages, 5 figure
    • 

    corecore