30 research outputs found

    Increased functional coupling of the mu opioid receptor in the anterior insula of depressed individuals

    Get PDF
    The mu opioid receptor (MOR) is a G protein-coupled receptor that plays an essential role in reward and hedonic processes, and that has been implicated in disorders such as depression and addiction. Over the last decade, several brain imaging studies in depressed patients have consistently found that dysregulation of MOR function occurs in particular in the anterior insular cortex, an important brain site for the perception of internal states and emotional regulation. To investigate molecular mechanisms that may underlie these effects, here we assessed genetic polymorphisms, expression, and functional G-protein coupling of MOR in a large post-mortem cohort (N = 95) composed of depressed individuals who died by suicide, and healthy controls. Results indicated that depression, but not comorbid substance use disorder or acute opiate consumption, was associated with increased MOR activity. This effect was partly explained by a specific increase in expression of the inhibitory alpha G-protein subunit GNAI2. Consistent with previous neuroimaging studies, our findings support the notion that enhanced endogenous opioidergic tone in the anterior insula may buffer negative affective states in depressed individuals, a mechanism that could potentially contribute to the antidepressant efficacy of emerging opioid-based medications.journal articleresearch support, non-u.s. gov't2021 042021 02 02importe

    In Vivo Delta Opioid Receptor Internalization Controls Behavioral Effects of Agonists

    Get PDF
    GPCRs regulate a remarkable diversity of biological functions, and are thus often targeted for drug therapies. Stimulation of a GPCR by an extracellular ligand triggers receptor signaling via G proteins, and this process is highly regulated. Receptor activation is typically accompanied by desensitization of receptor signaling, a complex feedback regulatory process of which receptor internalization is postulated as a key event. The in vivo significance of GPCR internalization is poorly understood. In fact, the majority of studies have been performed in transfected cell systems, which do not adequately model physiological environments and the complexity of integrated responses observed in the whole animal.In this study, we used knock-in mice expressing functional fluorescent delta opioid receptors (DOR-eGFP) in place of the native receptor to correlate receptor localization in neurons with behavioral responses. We analyzed the pain-relieving effects of two delta receptor agonists with similar signaling potencies and efficacies, but distinct internalizing properties. An initial treatment with the high (SNC80) or low (AR-M100390) internalizing agonist equally reduced CFA-induced inflammatory pain. However, subsequent drug treatment produced highly distinct responses. Animals initially treated with SNC80 showed no analgesic response to a second dose of either delta receptor agonist. Concomitant receptor internalization and G-protein uncoupling were observed throughout the nervous system. This loss of function was temporary, since full DOR-eGFP receptor responses were restored 24 hours after SNC80 administration. In contrast, treatment with AR-M100390 resulted in retained analgesic response to a subsequent agonist injection, and ex vivo analysis showed that DOR-eGFP receptor remained G protein-coupled on the cell surface. Finally SNC80 but not AR-M100390 produced DOR-eGFP phosphorylation, suggesting that the two agonists produce distinct active receptor conformations in vivo which likely lead to differential receptor trafficking.Together our data show that delta agonists retain full analgesic efficacy when receptors remain on the cell surface. In contrast, delta agonist-induced analgesia is abolished following receptor internalization, and complete behavioral desensitization is observed. Overall these results establish that, in the context of pain control, receptor localization fully controls receptor function in vivo. This finding has both fundamental and therapeutic implications for slow-recycling GPCRs

    Brain Struct Funct

    Get PDF
    Opioid receptors are G protein-coupled receptors (GPCRs) that modulate brain function at all levels of neural integration, including autonomic, sensory, emotional and cognitive processing. Mu (MOR) and delta (DOR) opioid receptors functionally interact in vivo, but whether interactions occur at circuitry, cellular or molecular levels remains unsolved. To challenge the hypothesis of MOR/DOR heteromerization in the brain, we generated redMOR/greenDOR double knock-in mice and report dual receptor mapping throughout the nervous system. Data are organized as an interactive database offering an opioid receptor atlas with concomitant MOR/DOR visualization at subcellular resolution, accessible online. We also provide co-immunoprecipitation-based evidence for receptor heteromerization in these mice. In the forebrain, MOR and DOR are mainly detected in separate neurons, suggesting system-level interactions in high-order processing. In contrast, neuronal co-localization is detected in subcortical networks essential for survival involved in eating and sexual behaviors or perception and response to aversive stimuli. In addition, potential MOR/DOR intracellular interactions within the nociceptive pathway offer novel therapeutic perspectives

    Antibody response and allogeneic mixed lymphocyte reaction in mu-, delta-, and kappa-opioid receptor knockout mice

    No full text
    The implication of opioid receptors in immune response has been studied using mu-, delta- and kappa-opioid receptor knockout mice. The mutant animals were compared to their wild-type (WT) counterparts for antibody (Ab) response to the prototype Ag keyhole limpet hemocyanin (KLH). Kappa-receptor deficient mice displayed higher Ab titers for either total Ig, IgM, IgG1 or IgG2a isotypes, whereas mu and delta animals behaved as wild-type mice. Therefore, endogenous kappa-receptor activation would tonically inhibit Ab response. Opioid receptor deficient mice were also used to investigate the immunosuppressive action of naltrindole, a delta-opioid receptor antagonist, shown earlier to inhibit graft rejection and the allogeneic mixed lymphocyte reaction (MLR) in vitro. Naltrindole and two related compounds inhibited MLR performed with lymphocytes from wild-type and delta-opioid receptor knockout mice. These compounds also suppressed MLR assayed with cells from triple mu/delta/kappa-opioid receptor mutants. We therefore demonstrate that naltrindole immunosuppressive activity is not mediated by any of the three mu-, delta- or kappa-opioid receptors, but by a target which remains to be discovered

    Enhanced humoral response in kappa-opioid receptor knockout mice

    No full text
    Opiates are major analgesics and addictive drugs described also as immunomodulators. Here, we investigated the contribution of kappa-opioid receptor (KOR) activity in immunity in vivo by studying immune responses in KOR knockout mice. These animals displayed a modest reduction in thymus cellularity and CD4(+) cell ratio, parallel to a slight increase in immature CD4(+)CD8(+) lymphocytes. In spleen, KOR null animals showed augmented cell number with no change in cell distribution. T and B lymphocyte proliferative capabilities in vitro, Natural Killer activity and steady-state Ig levels were unchanged in KOR-/- mice. We immunized the mice with the antigen keyhole limpet hemocyanin (KLH). Compared to wild-type (WT) mice, KOR-/- animals produced significant higher levels of antigen-specific total Ig, IgM, IgG1 and IgG2a antibodies. This enhancement of humoral activity was not observed in mu-opioid receptor and delta-opioid receptor knockout animals. These results show that endogenous activation of kappa-opioid receptors may exert a tonic inhibition of antibody (Ab) response

    The endocannabinoid system is modulated in reward and homeostatic brain regions following diet-induced obesity in rats: a cluster analysis approach

    Get PDF
    International audienceObjectives: Increased availability of high-calorie palatable food in most countries has resulted in overconsumption of these foods, suggesting that excessive eating is driven by pleasure, rather than metabolic need. The behavior contributes to the rise in eating disorders, obesity, and associated pathologies like diabetes, cardiac disease, and cancers. The mesocorticolimbic dopamine and homeostatic circuits are interconnected and play a central role in palatable food intake. The endocannabinoid system is expressed in these circuits and represents a potent regulator of feeding, but the impact of an obesogenic diet on its expression is not fully known.Methods: Food intake and body weight were recorded in male Wistar rats over a 6-week free-choice regimen of high fat and sugar; transcriptional regulations of the endocannabinoid system were examined post-mortem in brain reward regions (prefrontal cortex, nucleus accumbens, ventral tegmental area, and arcuate nucleus). K-means cluster analysis was used to classify animals based on individual sensitivity to obesity and palatable food intake. Endocannabinoid levels were quantified in the prefrontal cortex and nucleus accumbens. Gene expression in dopamine and homeostatic systems, including ghrelin and leptin receptors, and classical homeostatic peptides, were also investigated.Results: The free-choice high-fat -and sugar diet induced hyperphagia and obesity in rats. Cluster analysis revealed that the propensity to develop obesity and excessive palatable food intake was differently associated with dopamine and endocannabinoid system gene expression in reward and homeostatic brain regions. CB2 receptor mRNA was increased in the nucleus accumbens of high sugar consumers, whereas CB1 receptor mRNA was decreased in obesity prone rats.Conclusions: Transcriptional data are consistent with observations of altered dopamine function in rodents that have access to an obesogenic diet and point to cannabinoid receptors as GPCR targets involved in neuroplasticity mechanisms associated with maladaptive intake of palatable food

    Motivational effects of cannabinoids are mediated by μ-opioid and k-opioid receptor

    No full text
    Repeated THC administration produces motivational and somatic/nadaptive changes leading to dependence in rodents. To/ninvestigate the molecular basis for cannabinoid dependence/nand its possible relationship with the endogenous opioid system,/nwe explored Δ9-tetrahydrocannabinol (THC) activity in mice lacking μ-, δ- or κ-opioid receptor genes. Acute THCinduced hypothermia, antinociception, and ypolocomotion remained unaffected in these mice, whereas THC tolerance and withdrawal were minimally modified in mutant animals. In contrast, profound phenotypic changes are observed in several place conditioning protocols that reveal both THC rewarding and aversive properties. Absence of μ receptors abolishes THC place preference. Deletion of κ receptors ablates THC place aversion and furthermore unmasks THC place preference. Thus, an opposing activity of μ- and κ-opioid receptors in modulating reward pathways forms the basis for the dual euphoric–dysphoric activity of THC.This work was supported by the European Commission (Biomed-2 Grant 98-2227,to R.M.), Dr. Esteve S. A. Laboratories (R.M.), Generalitat de C atalunya (Research Distinction, to R.M.), the Spanish Ministry of Health (Fondo de Investigación Sanitaria Grant 99/0624, to R.M.), the Mission Interministerielle de Lutte contre la Drogue et la Toxicomanie (B.K .), and the Centre National de la Recherche Scientifique (B.K.). We thank J.F. Poirier and N. Scallon for animal care

    Protracted abstinence from distinct drugs of abuse shows regulation of a common gene network

    No full text
    International audienceAddiction is a chronic brain disorder. Prolonged abstinence from drugs of abuse involves dysphoria, high stress responsiveness and craving. The neurobiology of drug abstinence, however, is poorly understood. We previously identified a unique set of hundred mu-opioid receptor-dependent genes in the extended amygdala, a key site for hedonic and stress processing in the brain. Here we examined these candidate genes either immediately after chronic morphine, nicotine, Δ9-tetrahydrocannabinol or alcohol, or following 4 weeks of abstinence. Regulation patterns strongly differed among chronic groups. In contrast, gene regulations strikingly converged in the abstinent groups and revealed unforeseen common adaptations within a novel huntingtin-centered molecular network previously unreported in addiction research. This study demonstrates that, regardless the drug, a specific set of transcriptional regulations develops in the abstinent brain, which possibly contributes to the negative affect characterizing protracted abstinence. This transcriptional signature may represent a hallmark of drug abstinence and a unitary adaptive molecular mechanism in substance abuse disorders

    Motivational effects of cannabinoids are mediated by μ-opioid and k-opioid receptor

    No full text
    Repeated THC administration produces motivational and somatic/nadaptive changes leading to dependence in rodents. To/ninvestigate the molecular basis for cannabinoid dependence/nand its possible relationship with the endogenous opioid system,/nwe explored Δ9-tetrahydrocannabinol (THC) activity in mice lacking μ-, δ- or κ-opioid receptor genes. Acute THCinduced hypothermia, antinociception, and ypolocomotion remained unaffected in these mice, whereas THC tolerance and withdrawal were minimally modified in mutant animals. In contrast, profound phenotypic changes are observed in several place conditioning protocols that reveal both THC rewarding and aversive properties. Absence of μ receptors abolishes THC place preference. Deletion of κ receptors ablates THC place aversion and furthermore unmasks THC place preference. Thus, an opposing activity of μ- and κ-opioid receptors in modulating reward pathways forms the basis for the dual euphoric–dysphoric activity of THC.This work was supported by the European Commission (Biomed-2 Grant 98-2227,to R.M.), Dr. Esteve S. A. Laboratories (R.M.), Generalitat de C atalunya (Research Distinction, to R.M.), the Spanish Ministry of Health (Fondo de Investigación Sanitaria Grant 99/0624, to R.M.), the Mission Interministerielle de Lutte contre la Drogue et la Toxicomanie (B.K .), and the Centre National de la Recherche Scientifique (B.K.). We thank J.F. Poirier and N. Scallon for animal care

    Binge sucrose-induced neuroadaptations: A focus on the endocannabinoid system

    Get PDF
    Binge eating, the defining feature of binge eating disorder (BED), is associated with a number of adverse health outcomes as well as a reduced quality of life. Animals, like humans, selectively binge on highly palatable food suggesting that the behaviour is driven by hedonic, rather than metabolic, signals. Given the links to both reward processing and food intake, this study examined the contribution of the endocannabinoid system (ECS) to binge-like eating in rats. Separate groups were given intermittent (12 h) or continuous (24 h) access to 10% sucrose and food over 28 days, with only the 12 h access group displaying excessive sucrose intake within a discrete period of time (i.e., binge eating). Importantly, this group also exhibited alterations in ECS transcripts and endocannabinoid levels in brain reward regions, including an increase in cannabinoid receptor 1 (CB1R) mRNA in the nucleus accumbens as well as changes in endocannabinoid levels in the prefrontal cortex and hippocampus. We then tested whether different doses (1 and 3 mg/kg) of a CB1R antagonist, Rimonabant, modify binge-like intake or the development of a conditioned place preference (CPP) to sucrose. CB1R blockade reduced binge-like intake of sucrose and blocked a sucrose CPP, but only in rats that had undergone 28 days of sucrose consumption. These findings indicate that sucrose bingeing alters the ECS in reward-related areas, modifications that exacerbate the effect of CB1R blockade on sucrose reward. Overall, our results broaden the understanding of neural alterations associated with bingeing eating and demonstrate an important role for CB1R mechanisms in reward processing. In addition, these findings have implications for understanding substance abuse, which is also characterized by excessive and maladaptive intake, pointing towards addictive-like properties of palatable food
    corecore