63 research outputs found

    Detecting Vietnam War bomb craters in declassified historical KH-9 satellite imagery

    Get PDF
    Thousands of people are injured every year from explosive remnants of war which include unexploded ordnance (UXO) and abandoned ordnance. UXO has negative long-term impacts on livelihoods and ecosystems in contaminated areas. Exact locations of remaining UXO are often unknown as survey and clearance activities can be dangerous, expensive and time-consuming. In Vietnam, Lao PDR and Cambodia, about 20% of the land remains contaminated by UXO from the Vietnam War. Recently declassified historical KH-9 satellite imagery, taken during and immediately after the Vietnam War, now provides an opportunity to map this remaining contamination. KH-9 imagery was acquired and orthorectified for two study areas in Southeast Asia. Bomb craters were manually labeled in a subset of the imagery to train convolutional neural networks (CNNs) for automated crater detection. The CNNs achieved a F1-Score of 0.61 and identified more than 500,000 bomb craters across the two study areas. The detected craters provided more precise information on the impact locations of bombs than target locations available from declassified U.S. bombing records. This could allow for a more precise localization of suspected hazardous areas during non-technical surveys as well as a more fine-grained determination of residual risk of UXO. The method is directly transferable to other areas in Southeast Asia and is cost-effective due to the low cost of the KH-9 imagery and the use of open-source software. The results also show the potential of integrating crater detection into data-driven decision making in mine action across more recent conflicts

    Substantial large-scale feedbacks between natural aerosols and climate

    Get PDF
    The terrestrial biosphere is an important source of natural aerosol. Natural aerosol sources alter climate, but are also strongly controlled by climate, leading to the potential for natural aerosol-climate feedbacks. Here we use a global aerosol model to make an assessment of terrestrial natural aerosol-climate feedbacks, constrained by observations of aerosol number. We find that warmer-than-average temperatures are associated with higher-than-average number concentrations of large (>100 nm diameter) particles, particularly during the summer. This relationship is well reproduced by the model and is driven by both meteorological variability and variability in natural aerosol from biogenic and landscape fire sources. We find that the calculated extratropical annual mean aerosol radiative effect (both direct and indirect) is negatively related to the observed global temperature anomaly, and is driven by a positive relationship between temperature and the emission of natural aerosol. The extratropical aerosol-climate feedback is estimated to be -0.14 W m(-2) K-1 for landscape fire aerosol, greater than the -0.03 W m(-2) K-1 estimated for biogenic secondary organic aerosol. These feedbacks are comparable in magnitude to other biogeochemical feedbacks, highlighting the need for natural aerosol feedbacks to be included in climate simulations.Peer reviewe

    Pervasive Rise of Small-scale Deforestation in Amazonia

    Get PDF
    Understanding forest loss patterns in Amazonia, the Earth’s largest rainforest region, is critical for effective forest conservation and management. Following the most detailed analysis to date, spanning the entire Amazon and extending over a 14-year period (2001–2014), we reveal significant shifts in deforestation dynamics of Amazonian forests. Firstly, hotspots of Amazonian forest loss are moving away from the southern Brazilian Amazon to Peru and Bolivia. Secondly, while the number of new large forest clearings (>50 ha) has declined significantly over time (46%), the number of new small clearings (<1 ha) increased by 34% between 2001–2007 and 2008–2014. Thirdly, we find that small-scale low-density forest loss expanded markedly in geographical extent during 2008–2014. This shift presents an important and alarming new challenge for forest conservation, despite reductions in overall deforestation rates

    Seasonal and Inter-annual Variation of Evapotranspiration in Amazonia Based on Precipitation, River Discharge and Gravity Anomaly Data

    Get PDF
    We analyzed seasonal and spatial variations of evapotranspiration (ET) for five Amazon sub-basins and their response to the 2015/16 El Nino episode using a recently developed water-budget approach. ET varied typically between similar to 7 and 10 cm/month with exception of the Xingu basin for which it varied between 10 and 15 cm/month. Outstanding features of ET seasonality are (i) generally weak seasonality, (ii) two ET peaks for the two very wet catchments Solimoes and Negro, with one occurring during the wet season and one during the drier season, and (iii) a steady increase of ET during the second half of the dry season for the three drier catchments (Madeira, Tapajos, Xingu). Peak ET occurs during the first half of the wet season consistent with leaf flush occurring before the onset of the wet season. With regards to inter-annual variation, we found firstly that for the Solimoes and Madeira catchments the period with large positive wet season anomalies (2012-2015) is associated with negative ET anomalies, and negative SIF (solar induced fluorescence) anomalies. Furthermore, we found negative ET of several cm/months and SIF (up to 50%) anomalies for most of the Amazon basin during the 2015/16 El Nino event suggesting down-regulation of productivity as a main factor of positive carbon flux anomalies during anomalously hot and dry conditions. These results are of interest in view of predicted warmer and more erratic future climate conditions.Peer reviewe

    Achieving Brazil's deforestation target will reduce fire and deliver air quality and public health benefits

    Get PDF
    Climate, deforestation, and forest fires are closely coupled in the Amazon, but models of fire that include these interactions are lacking. We trained machine learning models on temperature, rainfall, deforestation, land-use, and fire data to show that spatial and temporal patterns of fire in the Amazon are strongly modified by deforestation. We find that fire count across the Brazilian Amazon increases by 0.44 percentage points for each percentage point increase in deforestation rate. We used the model to predict that the increased deforestation rate in the Brazilian Amazon from 2013 to 2020 caused a 42% increase in fire counts in 2020. We predict that if Brazil had achieved the deforestation target under the National Policy on Climate Change, there would have been 32% fewer fire counts across the Brazilian Amazon in 2020. Using a regional chemistry-climate model and exposure-response associations, we estimate that the improved air quality due to reduced smoke emission under this scenario would have resulted in 2300 fewer deaths due to reduced exposure to fine particulate matter. Our analysis demonstrates the air quality and public health benefits that would accrue from reducing deforestation in the Brazilian Amazon

    Sensitivity of air pollution exposure and disease burden to emission changes in China using machine learning emulation

    Get PDF
    Machine learning models can emulate chemical transport models, reducing computational costs and enabling more experimentation. We developed emulators to predict annual−mean fine particulate matter (PM(2.5)) and ozone (O(3)) concentrations and their associated chronic health impacts from changes in five major emission sectors (residential, industrial, land transport, agriculture, and power generation) in China. The emulators predicted 99.9% of the variance in PM(2.5) and O(3) concentrations. We used these emulators to estimate how emission reductions can attain air quality targets. In 2015, we estimate that PM(2.5) exposure was 47.4 μg m(−3) and O(3) exposure was 43.8 ppb, associated with 2,189,700 (95% uncertainty interval, 95UI: 1,948,000–2,427,300) premature deaths per year, primarily from PM(2.5) exposure (98%). PM(2.5) exposure and the associated disease burden were most sensitive to industry and residential emissions. We explore the sensitivity of exposure and health to different combinations of emission reductions. The National Air Quality Target (35 μg m(−3)) for PM(2.5) concentrations can be attained nationally with emission reductions of 72% in industrial, 57% in residential, 36% in land transport, 35% in agricultural, and 33% in power generation emissions. We show that complete removal of emissions from these five sectors does not enable the attainment of the WHO Annual Guideline (5 μg m(−3)) due to remaining air pollution from other sources. Our work provides the first assessment of how air pollution exposure and disease burden in China varies as emissions change across these five sectors and highlights the value of emulators in air quality research

    The potential for REDD+ to reduce forest degradation in Vietnam

    Get PDF
    Natural forests in Vietnam have experienced rapid declines in the last 70 years, as a result of degradation from logging and conversion of natural forests to timber and rubber plantations. Degradation of natural forests leads to loss of biodiversity and ecosystem services, impacting the livelihoods of surrounding communities. Efforts to address ongoing loss of natural forests, through mechanisms such as Reduced Emissions from Deforestation and Degradation (REDD+), require an understanding of the links between forest degradation and the livelihoods of local communities, which have rarely been studied in Vietnam. We combined information from livelihood surveys, remote sensing and forest inventories around a protected natural forest area in North Central Vietnam. For forest-adjacent communities, we found natural forests contributed an average of 28% of total household income with plantation forests contributing an additional 15%. Although officially prohibited, logging contributed more than half of the total income derived from natural forests. Analysis of Landsat images over the period 1990 to 2014 combined with forest inventory data, demonstrates selective logging was leading to ongoing degradation of natural forests resulting in loss of 3.3±0.8 Mg biomass ha-1 yr-1 across the protected area. This is equivalent to 1.5% yr-1 of total forest biomass, with rates as high as 3% yr-1 in degraded and easily accessible parts of the protected area. We estimate that preventing illegal logging would incur local opportunity costs of USD $4.10±0.90 per Mg CO2, similar to previous estimates for tropical forest protected areas and substantially less than the opportunity costs in timber or agricultural concessions. Our analysis suggests activities to reduce forest degradation in protected areas are likely to be financially viable through Vietnam's REDD+ program

    Residential energy use emissions dominate health impacts from exposure to ambient particulate matter in India

    Get PDF
    Exposure to ambient fine particulate matter (PM2.5) is a leading contributor to diseases in India. Previous studies analysing emission source attributions were restricted by coarse model resolution and limited PM2.5 observations. We use a regional model informed by new observations to make the first high-resolution study of the sector-specific disease burden from ambient PM2.5 exposure in India. Observed annual mean PM2.5 concentrations exceed 100 mu g m(-3) and are well simulated by the model. We calculate that the emissions from residential energy use dominate (52%) population-weighted annual mean PM2.5 concentrations, and are attributed to 511,000 (95UI: 340,000-697,000) premature mortalities annually. However, removing residential energy use emissions would avert only 256,000 (95UI: 162,000-340,000), due to the non-linear exposure-response relationship causing health effects to saturate at high PM2.5 concentrations. Consequently, large reductions in emissions will be required to reduce the health burden from ambient PM2.5 exposure in India

    Late-spring and summertime tropospheric ozone and NO2 in western Siberia and the Russian Arctic : regional model evaluation and sensitivities

    Get PDF
    We use a regional chemistry transport model (Weather Research and Forecasting model coupled with chemistry, WRF-Chem) in conjunction with surface observations of tropospheric ozone and Ozone Monitoring Instrument (OMI) satellite retrievals of tropospheric column NO2 to evaluate processes controlling the regional distribution of tropospheric ozone over western Siberia for late spring and summer in 2011. This region hosts a range of anthropogenic and natural ozone precursor sources, and it serves as a gateway for near-surface transport of Eurasian pollution to the Arctic. However, there is a severe lack of in situ observations to constrain tropospheric ozone sources and sinks in the region. We show widespread negative bias in WRF-Chem tropospheric column NO2 when compared to OMI satellite observations from May-August, which is reduced when using ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants) v5a emissions (fractional mean bias (FMB) = -0.82 to -0.73) compared with the EDGAR (Emissions Database for Global Atmospheric Research)-HTAP (Hemispheric Transport of Air Pollution) v2.2 emissions data (FMB = -0.80 to -0.70). Despite the large negative bias, the spatial correlations between model and observed NO2 columns suggest that the spatial pattern of NOx sources in the region is well represented. Scaling trans-port and energy emissions in the ECLIPSE v5a inventory by a factor of 2 reduces column NO2 bias (FMB = -0.66 to -0.35), but with overestimates in some urban regions and little change to a persistent underestimate in background regions. Based on the scaled ECLIPSE v5a emissions, we assess the influence of the two dominant anthropogenic emission sectors (transport and energy) and vegetation fires on surface NOx and ozone over Siberia and the Russian Arctic. Our results suggest regional ozone is more sensitive to anthropogenic emissions, particularly from the transport sector, and the contribution from fire emissions maximises in June and is largely confined to latitudes south of 60 degrees N. Ozone dry deposition fluxes from the model simulations show that the dominant ozone dry deposition sink in the region is to forest vegetation, averaging 8.0 Tg of ozone per month, peaking at 10.3 Tg of ozone deposition during June. The impact of fires on ozone dry deposition within the domain is small compared to anthropogenic emissions and is negligible north of 60 degrees N. Overall, our results suggest that surface ozone in the region is controlled by an interplay between seasonality in atmospheric transport patterns, vegetation dry deposition, and a dominance of transport and energy sector emissions.Peer reviewe

    Explaining global surface aerosol number concentrations in terms of primary emissions and particle formation

    Get PDF
    We use observations of total particle number concentration at 36 worldwide sites and a global aerosol model to quantify the primary and secondary sources of particle number. We show that emissions of primary particles can reasonably reproduce the spatial pattern of observed condensation nuclei (CN) (R2=0.51) but fail to explain the observed seasonal cycle at many sites (R2=0.1). The modeled CN concentration in the free troposphere is biased low (normalised mean bias, NMB=&#8722;88%) unless a secondary source of particles is included, for example from binary homogeneous nucleation of sulfuric acid and water (NMB=&#8722;25%). Simulated CN concentrations in the continental boundary layer (BL) are also biased low (NMB=&#8722;74%) unless the number emission of anthropogenic primary particles is increased or an empirical BL particle formation mechanism based on sulfuric acid is used. We find that the seasonal CN cycle observed at continental BL sites is better simulated by including a BL particle formation mechanism (R2=0.3) than by increasing the number emission from primary anthropogenic sources (R2=0.18). Using sensitivity tests we derive optimum rate coefficients for this nucleation mechanism, which agree with values derived from detailed case studies at individual sites
    corecore