59 research outputs found

    Validation and analysis of MOPITT CO observations of the Amazon Basin

    Get PDF
    We analyze satellite retrievals of carbon monoxide from the MOPITT (Measurements of Pollution in the Troposphere) instrument over the Amazon Basin, focusing on the MOPITT Version 6 "multispectral" retrieval product (exploiting both thermal-infrared and near-infrared channels). Validation results based on in situ vertical profiles measured between 2010 and 2013 are presented for four sites in the Amazon Basin. Results indicate a significant negative bias in retrieved lower-tropospheric CO concentrations. The possible influence of smoke aerosol as a source of retrieval bias is investigated using collocated Aerosol Robotic Network (AERONET) aerosol optical depth (AOD) measurements at two sites but does not appear to be significant. Finally, we exploit the MOPITT record to analyze both the mean annual cycle and the interannual variability of CO over the Amazon Basin since 2002

    Determination of Region of Influence Obtained by Aircraft Vertical Profiles Using the Density of Trajectories from the HYSPLIT Model

    Get PDF
    Aircraft atmospheric profiling is a valuable technique for determining greenhouse gas fluxes at regional scales (104–106 km2). Here, we describe a new, simple method for estimating the surface influence of air samples that uses backward trajectories based on the Lagrangian model Hybrid Single-Particle Lagrangian Integrated Trajectory Model (HYSPLIT). We determined “regions of influence” on a quarterly basis between 2010 and 2018 for four aircraft vertical profile sites: SAN and ALF in the eastern Amazon, and RBA and TAB or TEF in the western Amazon. We evaluated regions of influence in terms of their relative sensitivity to areas inside and outside the Amazon and their total area inside the Amazon. Regions of influence varied by quarter and less so by year. In the first and fourth quarters, the contribution of the region of influence inside the Amazon was 83–93% for all sites, while in the second and third quarters, it was 57–75%. The interquarter differences are more evident in the eastern than in the western Amazon. Our analysis indicates that atmospheric profiles from the western sites are sensitive to 42–52.2% of the Amazon. In contrast, eastern Amazon sites are sensitive to only 10.9–25.3%. These results may help to spatially resolve the response of greenhouse gas emissions to climate variability over Amazon

    Rosiglitazone decreases intra- to extramyocellular fat ratio in obese non-diabetic adults with metabolic syndrome

    Get PDF
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Background Insulin resistance is intrinsically related to intramyocellular (IMCL) rather than extramyocellular (EMCL) triglyceride content. Conflicting results have been reported on the ability of insulin sensitizer agents, such as thiazolidinediones, to modify muscle fat distribution. The aim of this study was to investigate the role of rosiglitazone on muscle fat compartment distribution in an adult population of obese non-diabetic metabolic syndrome patients. Patients and methods Fifteen obese, non-diabetic, metabolic syndrome patients were studied by means of proton nuclear magnetic resonance ((1)H-NMR) spectroscopy before and after treatment with rosiglitazone 8 mg/day for 6 months. Anthropometrical and metabolic variables were assessed. Results After rosiglitazone, body weight and hip circumference increased [100.9 (91.12-138.7) vs. 107.0 (79.6-142.8) kg and 118 (107-126) vs. 122 (110-131) cm]; while waist-hip ratio (WHR) decreased from 0.93 (0.87-1.00) to 0.89 (0.82-0.97) (P < 0.001 for all). Additionally, fasting plasma glucose, insulin and homeostatis model assessment of insulin resistance (HOMA-IR) significantly decreased while adiponectin increased over threefold [9.7 (3.7-17.7) vs. 38.0 (19.3-42.4) mu g/ml] without any changes in resistin. Finally, the IMCL did not change [267.54 (213.94-297.94) vs. 305.75 (230.80-424.75) arbitrary units (AU), P = 0.15] while the EMCL increased [275.53 (210.39-436.66) vs. 411.39 (279.92-556.59) AU; P < 0.01] therefore decreasing the IMCL-to-EMCL (IMCL/EMCL) ratio [1.07 (0.78-1.23) vs. 0.71 (0.53-0.96); P < 0.01]. Conclusion Rosiglitazone treatment increased body weight and hip circumference and decreased WHR. More importantly, it decreased the IMCL/EMCL ratio by increasing the EMCL without any significant change on the IMCL.2712329Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Research Supporting Agency of Rio de Janeiro State [E-26/150.141/99, E-26/170.522/00]Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)CNPq [CNPq 52 1850/96-7]Research Supporting Agency of Rio de Janeiro State [E-26/150.141/99, E-26/170.522/00

    Sixteen years of MOPITT satellite data strongly constrain Amazon CO fire emissions

    Get PDF
    Despite the consensus on the overall downward trend in Amazon forest loss in the previous decade, estimates of yearly carbon emissions from deforestation still vary widely. Estimated carbon emissions are currently often based on data from local logging activity reports, changes in remotely sensed biomass, and remote detection of fire hotspots and burned area. Here, we use 16 years of satellite-derived carbon monoxide (CO) columns to constrain fire CO emissions from the Amazon Basin between 2003 and 2018. Through data assimilation, we produce 3 d average maps of fire CO emissions over the Amazon, which we verified to be consistent with a long-term monitoring programme of aircraft CO profiles over five sites in the Amazon. Our new product independently confirms a long-term decrease of 54 % in deforestation-related CO emissions over the study period. Interannual variability is large, with known anomalously dry years showing a more than 4-fold increase in basin-wide fire emissions relative to wet years. At the level of individual Brazilian states, we find that both soil moisture anomalies and human ignitions determine fire activity, suggesting that future carbon release from fires depends on drought intensity as much as on continued forest protection. Our study shows that the atmospheric composition perspective on deforestation is a valuable additional monitoring instrument that complements existing bottom-up and remote sensing methods for land-use change. Extension of such a perspective to an operational framework is timely considering the observed increased fire intensity in the Amazon Basin between 2019 and 2021

    Drivers of population structure of the bottlenose dolphin (Tursiops truncatus) in the Eastern Mediterranean Sea

    Get PDF
    The drivers of population differentiation in oceanic high dispersal organisms, have been crucial for research in evolutionary biology. Adaptation to different environments is commonly invoked as a driver of differentiation in the oceans, in alternative to geographic isolation. In this study, we investigate the population structure and phylogeography of the bottlenose dolphin (Tursiops truncatus) in the Mediterranean Sea, using microsatellite loci and the entire mtDNA control region. By further comparing the Mediterranean populations with the well described Atlantic populations, we addressed the following hypotheses: (1) bottlenose dolphins show population structure within the environmentally complex Eastern Mediterranean Sea; (2) population structure was gained locally or otherwise results from chance distribution of preexisting genetic structure; (3) strong demographic variations within the Mediterranean basin have affected genetic variation sufficiently to bias detected patterns of population structure. Our results suggest that bottlenose dolphin exhibits population structures that correspond well to the main Mediterranean oceanographic basins. Furthermore, we found evidence for fine scale population division within the Adriatic and the Levantine seas. We further describe for the first time, a distinction between populations inhabiting pelagic and coastal regions within the Mediterranean. Phylogeographic analysis suggests that current genetic structure, results mostly from stochastic distribution of Atlantic genetic variation, during a recent postglacial expansion. Comparison with Atlantic mtDNA haplotypes, further suggest the existence of a metapopulation across North Atlantic/Mediterranean, with pelagic regions acting as source for coastal environments

    Role of the Mitochondria in Immune-Mediated Apoptotic Death of the Human Pancreatic β Cell Line βLox5

    Get PDF
    Mitochondria are indispensable in the life and death of many types of eukaryotic cells. In pancreatic beta cells, mitochondria play an essential role in the secretion of insulin, a hormone that regulates blood glucose levels. Unregulated blood glucose is a hallmark symptom of diabetes. The onset of Type 1 diabetes is preceded by autoimmune-mediated destruction of beta cells. However, the exact role of mitochondria has not been assessed in beta cell death. In this study, we examine the role of mitochondria in both Fas- and proinflammatory cytokine-mediated destruction of the human beta cell line, βLox5. IFNγ primed βLox5 cells for apoptosis by elevating cell surface Fas. Consequently, βLox5 cells were killed by caspase-dependent apoptosis by agonistic activation of Fas, but only after priming with IFNγ. This beta cell line undergoes both apoptotic and necrotic cell death after incubation with the combination of the proinflammatory cytokines IFNγ and TNFα. Additionally, both caspase-dependent and -independent mechanisms that require proper mitochondrial function are involved. Mitochondrial contributions to βLox5 cell death were analyzed using mitochondrial DNA (mtDNA) depleted βLox5 cells, or βLox5 ρ0 cells. βLox5 ρ0 cells are not sensitive to IFNγ and TNFα killing, indicating a direct role for the mitochondria in cytokine-induced cell death of the parental cell line. However, βLox5 ρ0 cells are susceptible to Fas killing, implicating caspase-dependent extrinsic apoptotic death is the mechanism by which these human beta cells die after Fas ligation. These data support the hypothesis that immune mediators kill βLox5 cells by both mitochondrial-dependent intrinsic and caspase-dependent extrinsic pathways

    Multiscale multifactorial approaches for engineering tendon substitutes

    Get PDF
    The physiology of tendons and the continuous strains experienced daily make tendons very prone to injury. Excessive and prolonged loading forces and aging also contribute to the onset and progression of tendon injuries, and conventional treatments have limited efficacy in restoring tendon biomechanics. Tissue engineering and regenerative medicine (TERM) approaches hold the promise to provide therapeutic solutions for injured or damaged tendons despite the challenging cues of tendon niche and the lack of tendon-specific factors to guide cellular responses and tackle regeneration. The roots of engineering tendon substitutes lay in multifactorial approaches from adequate stem cells sources and environmental stimuli to the construction of multiscale 3D scaffolding systems. To achieve such advanced tendon substitutes, incremental strategies have been pursued to more closely recreate the native tendon requirements providing structural as well as physical and chemical cues combined with biochemical and mechanical stimuli to instruct cell behavior in 3D architectures, pursuing mechanically competent constructs with adequate maturation before implantation.Authors acknowledge the project “Accelerating tissue engineering and personalized medicine discoveries by the integration of key enabling nanotechnologies, marinederived biomaterials and stem cells,” supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). Authors acknowledge the H2020 Achilles Twinning Project No. 810850, and also the European Research Council CoG MagTendon No. 772817, and the FCT Project MagTT PTDC/CTM-CTM/ 29930/2017 (POCI-01-0145-FEDER-29930

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency–Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research
    corecore