59 research outputs found

    La palliazione endoscopica con protesi delle neoplasie dell'esofago: studio comparativo

    Get PDF
    La palliazione endoscopica con protesi delle neoplasie dell'esofago: studio comparativ

    ERAS in General Thoracic Surgery

    Get PDF
    Enhanced recovery after surgery (ERAS®) is a strategy that seeks to reduce patients’ perioperative stress response, thereby reducing potential complications, decreasing hospital length of stay and enabling patients to return more quickly to their baseline functional status. This programme results from the union of several perioperative clinical elements that have individually proved to be beneficial to the patient and have showed, when used together, a synergy that results in a significant outcome improvement. The term was coined at the end of the 1990s and originally used to refer to a complex fast-track programme in open colorectal surgery. Subsequently, the practice has spread to other surgical specialties centralising the interest of clinicians and researchers. The objective of this chapter is to analyse the key elements of an ERAS protocol applicable to minimally invasive thoracic surgery

    Analysis of Catania Flash Flood Case Study by Using Combined Microwave and Infrared Technique

    Get PDF
    Abstract In this paper, the analysis of an extreme convective event atypical for the winter season, which occurred on 21 February 2013 on the east coast of Sicily and caused a flash flood over Catania, is presented. In just 1 h, more than 50 mm of precipitation was recorded, but it was not forecast by numerical weather prediction (NWP) models and, consequently, no severe weather warnings were sent to the population. The case study proposed is first examined with respect to the synoptic situation and then analyzed by means of two algorithms based on satellite observations: the Cloud Mask Coupling of Statistical and Physical Methods (MACSP) and the Precipitation Evolving Technique (PET), developed at the National Research Council of Italy. Both of the algorithms show their ability in the near-real-time monitoring of convective cell formation and their rapid evolution. As quantitative precipitation forecasts by NWP could fail, especially for atypical convective events like in Catania, tools like MACSP and PET shall be adopted by civil protection centers to monitor the real-time evolution of deep convection events in aid to the severe weather warning service

    Chest wall reconstruction with implantable cross-linked porcine dermal collagen matrix: Evaluation of clinical outcomes

    Get PDF
    Objectives: The aim of the study is to evaluate clinical applications, safety, and effectiveness of a porcine-derived acellular cross-linked dermal matrix biological mesh in chest wall reconstruction. Methods: We retrospectively analyzed a prospective multicenter database of chest wall reconstructions using a biological mesh in adult patients undergoing operation between October 2013 and December 2020. We evaluated preoperative data, type of resection and reconstruction, hospitalization, 30-day morbidity and mortality, and overall survival. Results: A total of 105 patients (36 women [34.2%]; mean age, 57.0 +/- 16.1 years; range, 18-90 years) were included, they have admitted for: primary chest wall tumor (n = 52; 49.5%), secondary chest wall tumor (n = 29; 27.6%), lung hernia (n = 12; 11.4%), trauma (n =10; 9.6%), and infections (n = 2; 1.9%). The surgical sites were preoperatively defined as at high risk of infection in 28 patients (26.7%) or as infected in 16 (15.2%) patients. Thirty-days morbidity was 30.5% (n = 32 patients); 14 patients (13.3%) had postoperative complications directly related to chest wall surgical resection and/or reconstruction. We experienced no 30-day mortality; 1-year and 2-year mortality was 8.4% and 16.8%, respectively. Conclusions: Biological mesh represents a valuable option in chest wall reconstruction even when surgical sites are infected or at high-risk of infections. This mesh shows low early and late postoperative complication rates and excellent long-term stability

    Development of a video-assisted thoracoscopic lobectomy program in a single institution: Results before and after completion of the learning curve

    Get PDF
    BACKGROUND: The development of a video assisted thoracic surgery lobectomy (VATS-L) program provides a dedicated surgical team with a recognized learning curve (LC) of 50 procedures. We analyse the results of our program, comparing the LC with subsequent cases. METHODS: From June 2012 to March 2015, we performed n = 146 VATS major pulmonary resections: n = 50 (Group A: LC); n = 96 (Group B). Pre-operative mediastinal staging followed the National Comprehensive Cancer Network guidelines. All procedures were performed using a standard anterior approach to the hilum; lymphadenectomy followed the NCCN recommendations. During the LC, VATS-L indication was reserved to clinical stages I, therefore evaluated case by case. RESULTS: Mean operative time was 191 min (120-290) in Group A and 162 min (85-360) in Group B (p <0,01). Pathological T status was similar between two Groups. Lymphadenectomy included a mean of 5.8 stations in Group A and 6.6 in Group B resulting in: pN0 disease: Group A n = 44 (88 %), Group B n = 80 (83.4 %); pN1: Group A n = 3 (6 %), Group B n = 8 (8.3 %); pN2: Group A n = 3 (6 %), Group B n = 8 (8.3 %). Conversion rate was: 8 % in group A (n = 4 vascular injuries); 1.1 % in Group B (n = 1 hilar lymph node disease). We registered n = 6 (12 %) complications in Group A, n = 10 (10.6 %) in Group B. One case (1.1 %) of late post-operative mortality (90 days) was registered in Group B for liver failure. Mean hospital stay was 6.5 days in Group A and 5.9 days in Group B. CONCLUSIONS: We confirm the effectiveness of a VATS-L program with a learning curve of 50 cases performed by a dedicated surgical team. Besides the LC, conversion rate falls down, lymphadenectomy become more efficient, indications can be extended to upper stages

    Fog Detection Based on Meteosat Second Generation-Spinning Enhanced Visible and InfraRed Imager High Resolution Visible Channel

    Get PDF
    In this study, the Meteosat Second Generation (MSG)-Spinning Enhanced Visible and Infrared Imager (SEVIRI) High Resolution Visible channel (HRV) is used in synergy with the narrow band MSG-SEVIRI channels for daytime fog detection. A new algorithm, named MSG-SEVIRI SatFog, has been designed and implemented. MSG-SEVIRI SatFog provides the indication of the presence of fog in near real time and at the high spatial resolution of the HRV channel. The HRV resolution is useful for detecting small scale daytime fog that would be missed in the MSG-SEVIRI low spatial resolution channels. By combining textural, physical and tonal tests, a distinction between fog and low stratus is performed for pixels identified as low/middle clouds or clear by the Classification-MAsk Coupling of Statistical and Physical Methods (C-MACSP) cloud detection algorithm. Suitable thresholds have been determined using a specific dataset covering different geographical areas, seasons and time of the day. MSG-SEVIRI SatFog is evaluated against METeorological Aerodrome Reports (METAR) data observations. Evaluation results in an accuracy of 69.9%, a probability of detection of 68.7%, a false alarm ratio of 31.3% and a probability of false detection of 30.0%

    Generation of Induced Pluripotent Stem Cells from Patients with Duchenne Muscular Dystrophy and their induction to Neurons

    Get PDF
    Duchenne muscular dystrophy (DMD) is an X-linked recessive disease characterized by deficient expression of the cytoskeletal protein dystrophin. DMD has been associated with intellectual disability and mental retardation (MR) and is present in about a third of all patients. Loss of Dp71, the major dystrophin-gene product in brain, and the dystrophin associated proteins (DAPs) are thought to contribute to severity of MR, but the specific function of the neural dystrophin proteins are poorly understood for a limited access to DMD patients brain tissue (1). Differentiation of induced Pluripotent Stem Cells (iPSCs) provides an opportunity to generate an unlimited supply of living neurons genetically identical to those present in patients. In this study we obtained DMD-iPSCs from peripheral blood mononuclear cells of DMD patients with cognitive impairment and we performed morphological (fluorescence and electron microscopy), molecular (Western Blot and Real Time PCR) and functional (electrophysiology) characterization both of iPSC-derived Neural Stem Cells (NSCs) and the differentiated neurons. Preliminary data showed a reduction of Dp71 and DAPs proteins, including the AQP4, potassium channel Kir4.1, α- and β-dystroglycan (α/βDG) and α-syntrophin (αSyn), both at transcriptional and traductional level, coupled with membrane dys-arrangment in DMD-iPSCs compared with healthy iPSCs. Moreover, we demonstrated that the neurons obtained from the differentiation of iPSCs derived from DMD patient showed after confocal analysis, altered cytoskeleton and reduction in Dp71expression, and by single-cell imaging experiments and electrophysiology, altered intracellular calcium homeostasis, in analogy with what shown in the dystrophic mdx mouse neurons (2). Overall these results showed that the Dp71 and DAPs alterations affect also the neural precursor as well as the differentiated neurons in DMD patients, so suggesting a key role in the pathogenesis of neurocognitive deficits in DMD disease
    • …
    corecore