143 research outputs found

    Cooling history and emplacement of a pyroxenitic lava as proxy for understanding Martian lava flows

    Get PDF
    Terrestrial analogues are often investigated to get insights into the geological processes occurring on other planetary bodies. Due to its thickness and petrological similarities, the pyroxenitic layer of the 120m-thick magmatic pile Theo’s Flow (Archean Abitibi greenstone belt Ontario, Canada), has always been regarded as the terrestrial analogue for Martian nakhlites. However, its origin and cooling history and, as a consequence those of nakhlites, have always been a matter of vigorous debate. Did this lava flow originate from a single magmatic event similar to those supposed to occur on Mars or do the different units derive from multiple eruptions? We demonstrate, by a combination of geothermometric constraints on augite single crystals and numerical simulations, that Theo’s Flow has been formed by multiple magma emplacements that occurred at different times. This discovery supports the idea that the enormous lava flows with similar compositions observed on Mars could be the result of a process where low viscosity lavas are emplaced during multiple eruptions. This has profound implications for understanding the multiscale mechanisms of lava flow emplacement on Earth and other planetary bodies

    Calophyllum brasiliense

    Get PDF

    Automated River Reach Definition Strategies: Applications for the Surface Water and Ocean Topography Mission

    Get PDF
    The upcoming Surface Water and Ocean Topography (SWOT) mission will measure water surface heights and widths for rivers wider than 100 m. At its native resolution, SWOT height errors are expected to be on the order of meters, which prevent the calculation of water surface slopes and the use of slope-dependent discharge equations. To mitigate height and width errors, the high-resolution measurements will be grouped into reaches (∼5 to 15 km), where slope and discharge are estimated. We describe three automated river segmentation strategies for defining optimum reaches for discharge estimation: (1) arbitrary lengths, (2) identification of hydraulic controls, and (3) sinuosity. We test our methodologies on 9 and 14 simulated SWOT overpasses over the Sacramento and the Po Rivers, respectively, which we compare against hydraulic models of each river. Our results show that generally, height, width, and slope errors decrease with increasing reach length. However, the hydraulic controls and the sinuosity methods led to better slopes and often height errors that were either smaller or comparable to those of arbitrary reaches of compatible sizes. Estimated discharge errors caused by the propagation of height, width, and slope errors through the discharge equation were often smaller for sinuosity (on average 8.5% for the Sacramento and 6.9% for the Po) and hydraulic control (Sacramento: 7.3% and Po: 5.9%) reaches than for arbitrary reaches of comparable lengths (Sacramento: 8.6% and Po: 7.8%). This analysis suggests that reach definition methods that preserve the hydraulic properties of the river network may lead to better discharge estimates

    Quantifying the effects of nature-based solutions in reducing risks from hydrometeorological hazards: Examples from Europe

    Get PDF
    The combination of climate change and social and ecological factors will increase risks societies face from hydrometeorological hazards (HMH). Reducing these risks is typically achieved through the deployment of engineered (or grey) infrastructure but increasingly, nature-based so-lutions (NBS) are being considered. Most risk assessment frameworks do not allow capturing well the role NBS can play in addressing all components of risk, i.e., the hazard characteristics and the exposure and vulnerability of social-ecological systems. Recently, the Vulnerability and Risk as-sessment framework developed to allow the assessment of risks in the context of NBS implemen-tation (VR-NBS framework) was proposed. Here, we carry out the first implementation of this framework using five case study areas in Europe which are exposed to various HMH. Our results show that we can demonstrate the effect NBS have in terms of risk reduction and that this can be achieved by using a flexible library of indicators that allows to capture the specificities of each case study hazard, social and ecological circumstances. The approach appears to be more effec-tive for larger case study areas, but further testing is required in a broader variety of contexts

    Crna Prst und Terglou-Seen : Touristische und botanische Notizen

    Get PDF
    Diamond is a material of immense technological importance and an ancient signifier for wealth and societal status. In geology, diamond forms as part of the deep carbon cycle and typically displays a highly ordered cubic crystal structure. Impact diamonds, however, often exhibit structural disorder in the form of complex combinations of cubic and hexagonal stacking motifs. The structural characterization of such diamonds remains a challenge. Here, impact diamonds from the Popigai crater were characterized with a range of techniques. Using the MCDIFFaX approach for analysing X-ray diffraction data, hexagonality indices up to 40% were found. The effects of increasing amounts of hexagonal stacking on the Raman spectra of diamond were investigated computationally and found to be in excellent agreement with trends in the experimental spectra. Electron microscopy revealed nanoscale twinning within the cubic diamond structure. Our analyses lead us to propose a systematic protocol for assigning specific hexagonality attributes to the mineral designated as lonsdaleite among natural and synthetic samples

    Altimetry for the future: Building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the “Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion
    corecore