
RESEARCH ARTICLE
10.1002/2017WR020887

Automated River Reach Definition Strategies: Applications for
the Surface Water and Ocean Topography Mission
Renato Prata de Moraes Frasson1 , Rui Wei1, Michael Durand1,2 , J. Toby Minear3,
Alessio Domeneghetti4, Guy Schumann5 , Brent A. Williams6 , Ernesto Rodriguez6 ,
Christophe Picamilh7, Christine Lion8, Tamlin Pavelsky8 , and Pierre-Andr�e Garambois9

1Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA, 2School of Earth Sciences, Ohio State
University, Columbus, OH, USA, 3Cooperative Institute for Research in Environmental Sciences, University of Colorado,
Boulder, CO, USA, 4School of Civil Engineering, University of Bologna, Bologna, Italy, 5Remote Sensing Solutions, Inc.,
Monrovia, CA, USA, 6Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA, 7Department of
Hydraulics and Fluid Mechanics, INP – ENSEEIHT, Toulouse, France, 8Department of Geological Sciences, University of
North Carolina, Chapel Hill, NC, USA, 9ICUBE-UMR 7357 Fluid Mechanics Team, INSA Strasbourg, Strasbourg, France

Abstract The upcoming Surface Water and Ocean Topography (SWOT) mission will measure water sur-
face heights and widths for rivers wider than 100 m. At its native resolution, SWOT height errors are
expected to be on the order of meters, which prevent the calculation of water surface slopes and the use of
slope-dependent discharge equations. To mitigate height and width errors, the high-resolution measure-
ments will be grouped into reaches (�5 to 15 km), where slope and discharge are estimated. We describe
three automated river segmentation strategies for defining optimum reaches for discharge estimation: (1)
arbitrary lengths, (2) identification of hydraulic controls, and (3) sinuosity. We test our methodologies on 9
and 14 simulated SWOT overpasses over the Sacramento and the Po Rivers, respectively, which we compare
against hydraulic models of each river. Our results show that generally, height, width, and slope errors
decrease with increasing reach length. However, the hydraulic controls and the sinuosity methods led to
better slopes and often height errors that were either smaller or comparable to those of arbitrary reaches of
compatible sizes. Estimated discharge errors caused by the propagation of height, width, and slope errors
through the discharge equation were often smaller for sinuosity (on average 8.5% for the Sacramento and
6.9% for the Po) and hydraulic control (Sacramento: 7.3% and Po: 5.9%) reaches than for arbitrary reaches of
comparable lengths (Sacramento: 8.6% and Po: 7.8%). This analysis suggests that reach definition methods
that preserve the hydraulic properties of the river network may lead to better discharge estimates.

1. Introduction

Assessing and predicting the availability of freshwater requires comprehensive measurements of river discharge
and surface water storage, with sufficient spatial and temporal resolution to resolve the propagation of hydro-
logical events through channels, floodplains, and lakes (Alsdorf & Lettenmaier, 2003). The global in situ network
of gages does not entirely fulfil these requirements due to its heterogeneous spatial distribution, with varying
density among different countries (Alsdorf et al., 2007) combined with data sharing barriers between nations
(e.g., Gleason & Hamdan, 2015; Hossain et al., 2014; Sneddon & Fox, 2012; Wolf et al., 1999). With a planned
launch in 2021, the upcoming Surface Water and Ocean Topography (SWOT) mission has the potential to fill
gaps in the global streamgage network (Pavelsky et al., 2014) by providing freely available and spatially distrib-
uted observations of rivers wider than 100 m and lakes with an inundation area in excess of 62,500 m2 (Bianca-
maria et al., 2015; Rodr�ıguez, 2015). The anticipated benefits of this mission for surface water hydrology include:
novel insights into the dynamics of water storage changes in lakes, reservoirs, and wetlands, and river discharge
(Durand et al., 2010a), better understanding of the global water cycle and runoff processes (Pavelsky et al.,
2014), easier monitoring of transboundary rivers (Biancamaria et al., 2011; Gleason & Hamdan, 2015; Hossain
et al., 2014), simpler access to observations over remote areas assisting the management of reservoirs (Munier
et al., 2015; Solander et al., 2016) and supporting flood modeling and forecasting (Schumann et al., 2010).

The core payload in the SWOT satellite is the Ka-band Radar Interferometer (KaRIn), which builds upon the
Shuttle Radar Topography Mission (SRTM, described by Farr et al., 2007). SWOT will orbit Earth at an altitude
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of 890.5 km with an inclination of 77.68 and repeat period of 20.86 days, during which most locations will
be revisited between 1 and 3 times, with the revisitation frequency increasing with increasing latitude
(Biancamaria et al., 2015). KaRIn will illuminate the surface with two 50 km swaths parallel to the ground
track of the satellite and separated by a 20 km nadir gap. Inside each swath, the radar will resolve pixels at a
native resolution varying from 60 m at the near range to 10 m at the far range and an along-track resolution
of 6–7 m. (Biancamaria et al., 2015; Fjørtoft et al., 2014). The instrument will rely on the expected high con-
trast between water and land surfaces for water detection and on the phase difference between signals
received by both antennas to construct interferograms, which combined with a terrain Digital Elevation
Model (DEM) will allow the geolocation of pixels (Fjørtoft et al., 2014). More recently, Altenau et al. (2017)
demonstrated the calculation of water surface heights and slopes from airborne Ka-band measurements
from the AirSWOT platform, an airplane-mounted interferometric synthetic aperture radar, achieving root-
mean-square errors of 9.0 cm and 1.0 cm km21 for 10 km reaches for heights and slopes, respectively, over
the Tanana River, located in Alaska.

Dingman and Bjerklie (2006) list a series of hydraulically meaningful variables that can be observed by satel-
lite or aircraft-mounted instrumentation from which river discharge can be estimated. From this list, SWOT
will be able to characterize water surface area, elevation, slope, changes in cross-sectional area, as well as
channel morphology through indices such as sinuosity, meander length, and radius, whereas the remaining
variables, i.e., velocity and depth, will have to be estimated. Four main families of methods will be used to
estimate discharge based on SWOT data: data assimilation (e.g., Andreadis et al., 2007; Yoon et al., 2012),
inversion of the Manning or other flow resistance equations (Durand et al., 2008; Durand et al., 2010b;
Durand et al., 2014; Garambois & Monnier, 2015; Roux & Dartus, 2005; Yoon et al., 2016), scaling laws (Ding-
man, 2007; Gleason & Smith, 2014; Gleason et al., 2014; Leopold & Maddock, 1953), and by deriving channel
resistance parameters by comparison with other known rivers (Bjerklie et al., 2003, 2005).

The application of Manning’s equation requires the ability to estimate water surface slopes. LeFavour and
Alsdorf (2005) evaluated the reach lengths necessary to resolve slopes in the presence of noise over areas
of the Amazon basin. In their analysis, considering a minimum slope of 1.5 cm/km (Birkett et al., 2002) and a
height error standard deviation of 5.51 m (LeFavour & Alsdorf, 2005), the minimum reach length need for
the calculation of slope could be estimated by:

L5
2r

Smin
(1)

where L stands for the reach length in meters, r for the height error standard deviation in meters, and Smin

for the minimum slope in meters per kilometer, leading to a minimum reach length of 734 km.

The evaluation of the anticipated SWOT mission performance compiled by Esteban-Fernandez (2013) esti-
mated a SWOT height error standard deviation of 4.4 cm when averaged over a 1 km2 area and assessed
the resulting slope uncertainty with:

r2
slope5
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where rh represents the height error standard deviation in cm based on an averaging area of 1 km2 and L
and W stand for reach length and width in km, respectively. Using the target values of 100 m for width,
1.4 cm/km for the slope standard deviation, and 4.4 cm for the height standard deviation listed in the sci-
ence requirement documents (Rodr�ıguez, 2015), the necessary reach length would be 6.9 km.

However, as described by C. Parker et al. (2012), the definition of the term ‘‘river reach’’ varies across disci-
plines, and often within the same discipline. C. Parker et al. (2012) classifies the different definition of
reaches into two groups: operational, which are generally defined in terms of length, e.g., 500 m or a length
equivalent to a number of channel widths, and functional, which define reaches based on distances over
which a process of interest occurs. Within the functional category, the criterion or criteria used to define
reach boundaries depends on how the resulting reaches are utilized. For example, Brenden et al. (2008) pro-
poses an algorithm for reach definition that groups adjacent river segments into reaches based on simili-
tude and tests the proposed methodology for river ecology studies. As the proposed use was for
monitoring of river ecosystem, Brenden et al. (2008) evaluated the affinity of river segments based on seven
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physicochemical river attributes that were descriptive of fish habitats. In a more recent study, Mart�ınez-
Fern�andez et al. (2016) designed a procedure for automatic reach definition to be applied to geomorpho-
logical studies. As the aim of the method was to define spatial units for the study of the river geomorphol-
ogy, the chosen variables were valley slope, valley width, and active channel widths.

As our aim is discharge estimation, we focus on variables that are descriptive of hydraulic properties of the
river. As shown for a braided river section of the Amazon basin with along stream altimetry data, the loca-
tion of reach boundaries and the resulting reach lengths determine our ability to detect water surface slope
variations, which reflect the balance between gravity and friction that drives free-surface flows (Garambois
et al., 2017). Thus, Garambois et al. (2017) suggests the use of water surface slope spatial variability and the
detection of inflection points on the water surface as criteria for river segmentation to be applied for the
organization of altimetry data such as those provided by SWOT (Garambois et al., 2017).

As planform shape reflects river hydraulics, changes in planform descriptors are indicative of changes in
hydraulic properties of rivers and could be used for reach definition. Leopold and Wolman (1960) suggested
a connection between river hydraulics and plan view forms described by width of meander belts, channel
sinuosity, and arc lengths, i.e., half of a meander wavelength. More recently, Bjerklie (2007) identified rela-
tionships between bankfull velocity and morphological descriptors such as meander wavelength, which can
be estimated using satellite imagery. While the width of meander belts and meandering wavelength may
be of difficult evaluation when the river planform deviates from a well-established sinusoidal pattern, sinu-
osity can be easily calculated and adjusted according to the length scale of interest, making it a good candi-
date for the definition of reaches.

The method used for the definition of river reaches may impact the quality of the discharge estimations by
violating assumptions in the discharge equations, e.g., violating conservation of mass between contiguous
reaches, including within its boundaries abrupt energy dissipation such as caused by dams or waterfalls, or
by containing excessive observational uncertainty. While some reach boundaries are obvious, such as the
location of major confluences, known waterfalls, dams, and other hydraulic structures, and for the specific
case of SWOT, the swath boundaries, others are not easily recognizable without specialized data and human
interaction, e.g., changes in channel bathymetry, changes in bed material leading to different flow resis-
tance and planform characteristics, and others. Therefore, adequate reach definition strategies will, as well
as possible, preserve the assumptions under which the discharge equations are derived and parameterized.
Nevertheless, reaches should be long enough to allow for acceptable random errors associated with the
observations derived from the chosen remote sensing platform.

Our work proposes two alternatives to utilize reaches of arbitrary lengths: the first based on the identifica-
tion of inflection points on the water surface profile, which we assume to be associated with the location of
hydraulic controls (Garambois et al., 2017; O’Loughlin et al., 2013), and a second method based on the iden-
tification of areas with similar sinuosity. Both methods are automated, requiring no further manual interven-
tion after their initial configuration, which allows their application at global scale. Moreover, the methods
are complementary. As the sinuosity method can be applied on centerlines derived from existing Landsat
data, with a centerline delineation methodology such as described by Allen and Pavelsky (2015b), it can be
used before the acquisition of new water surface elevation data and is suitable for the initial definition of
reaches for a remote sensing platform such as SWOT. In contrast, the hydraulic controls method can be
best applied to refine reaches once time series of water surface elevations are available and will allow detec-
tion of hydraulic structures not listed in prior databases.

We evaluate the performance of our reach definition and averaging methods in terms of reach-averaged
water surface height, width, slope, and discharge root-mean-square errors. We compute reach-averaged
errors by taking the differences between reach-averaged synthetic SWOT measurements and reach-
averaged truths derived from the output of hydraulic models for the Sacramento and Po Rivers calculated
as described in section 2.7. We discuss the similarities between the hydraulic control and sinuosity based
methods in section 3.1 in terms of the proximity between reach boundaries identified by both methods.
Sections 3.2.1, 3.2.2, and 3.2.3 present the evaluation of reach-averaged height, width, and slope errors,
respectively, for the three reach definition methods as well as the evaluation of the impact of reach length
on reach-averaged errors. Finally, section 3.2.4 discusses discharge errors caused by reach-averaged height,
width, and slope errors.
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2. Materials and Methods

2.1. Study Areas and Hydraulic Models
2.1.1. Sacramento River
The Sacramento River, near Colusa, CA, is a Mediterranean-climate river with a strong seasonal signal and
distinct wet (November–May) and dry (June–October) seasons. The upper reaches of the Sacramento River
are driven by substantial snowmelt runoff in early summer and infrequent large floods caused by large win-
ter rain events, particularly those affecting the lower elevations of the watershed. There are significant dam-
related hydrologic alterations, in particular the Shasta Dam (constructed in 1945), one of the ten largest
dams in the United States, but also from numerous smaller dams and irrigation diversions along the length
of the river (Kondolf & Batalla, 2005; Minear, 2010). During most flow conditions, levees constrict the river in
the reaches downstream of Colusa, where the average river width varies from 80 to 100 m, whereas in the
reaches upstream of Colusa, the levees are farther removed from the channel leading to an average width
that ranges from 130 to 200 m depending on discharge.

For this study, we used a one-dimensional (1-D) hydraulic model of the study area released in 2013 by the
California Department of Water Resources as part of the Central Valley floodplain evaluation and delineation
program (Rogers, 2014). The geometry within the 1-D hydraulic model was created from topographic and
bathymetric data collected in 2008–2010 from airborne LiDAR, and land- and boat-based surveys for the
use in Central Valley floodplain evaluation and delineation program. Roughness coefficients were obtained
by calibration using streamgage data collected during a high flow event from 2006 (Rogers, 2014). The
resulting composite roughness coefficients considering main channel and floodplain varied from 0.02 to
0.071 s m21/3 in the upstream section of the Sacramento River, where levees are less prominent, whereas n
varied from 0.025 to 0.035 s m21/3 downstream from Colusa, where the river is more confined to the main
channel.

In the 1-D hydraulic model of the 155 km study area, there are 601 cross sections at an average spacing of
258 m, which corresponds to approximately 2.3 times average river width. To generate results for the SWOT
hydrology simulator (described in section 2.2), the 1-D hydraulic model ran for 6 months, simulating dis-
charges from 118 to 510 m3s21. The Sacramento River study area alongside the evaluated SWOT swaths is
depicted in Figure 1.
2.1.2. Po River
The Po River is the largest and longest Italian river, with a main stream length nearly equal to 650 km. The
river basin has a catchment area of 70,090 km2, which occupies almost entirely the Northern part of Italy.
The Po River flows in the Eastern direction, from the Southern face of the Italian Alps to its delta in the Adri-
atic Sea. The river basin belongs to a Mediterranean climate zone, however, the hydrological regime of the
river is influenced by 141 major tributaries, which flow from the Alps and Apennines and are subjected to
unique orographic effects (Montanari et al., 2016). The river flows through the Po valley, one of the most
economically developed areas in Italy with extensive human settlements, intense agricultural and industrial
activity, and thus it has been strongly engineered to prevent floods. Referring in particular to the river
stretch of interest for this study, i.e., from the gaging station of Borgoforte—458030N 108450E—to the begin-
ning of the delta, the river is delimited by a system of earth embankments that constrain a stable main
channel (200–500 m in width) and large floodplains characterized by widths that may vary up to 2.5 km.

The hydraulic behavior of the Po River is simulated by a quasi-two-dimensional hydraulic model with cross-
sections built from a 2 m resolution LiDAR DEM (2005) integrated with boat surveys of the river (see
Castellarin et al., 2011b, for more details). The Po River hydraulic model covered a river length of 133 km,
which contained 111 cross-sections at an average spacing of 1.2 km, i.e., approximately 3 times average
river width. Roughness coefficients were obtained through calibration using stage hydrographs observed at
seven locations during the flood event of October 2000 and high water marks surveyed after the flood as
described by Castellarin et al. (2011a). The roughness coefficient of the main channel varied in space but
not in time, assuming 10 distinct values for the study area, which ranged from 0.044 s m21/3 (upstream sec-
tion) to 0.025 s m21/3 (downstream section), whereas the floodplain n was assumed to be constant in space
and time and equal to 0.1 s m21/3 (Domeneghetti et al., 2014). The hydraulic model of the Po River ran for
12 months, simulating discharges from 711 to 4,770 m3 s21. Figure 2 shows the Po River study area along-
side the analyzed SWOT swaths.
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2.2. SWOT Hydrology Simulator
The Jet Propulsion Laboratory (JPL) developed the SWOT hydrology simulator to generate synthetic SWOT
measurements with realistic error characteristics. The SWOT simulator uses as inputs the DEM of the study
area including water and land areas and a water mask. The water masks are two-dimensional maps that
show which areas within the study area are inundated at the time of the simulated pass. Masks for each
pass are built with the same resolution as the combined water-terrain DEM using inundation maps output-
ted by the hydraulic models at the closest time step to the time of the pass. The DEM of the area is built by
superimposing the water surface maps outputted by the hydraulic models on the terrain DEM, such that if a
pixel is inside the water mask, its height reflects the water surface height, whereas the heights of pixels
located outside of the water mask correspond to the height of the terrain.

The simulator generates synthetic radar interferograms of the area, initially with no associated noise or mea-
surement errors other than terrain layover. Subsequently, it simulates noisy interferograms by adding corre-
lated circular Gaussian noise. The Gaussian correlation coefficient is determined by the interferometric
coherence, which is modeled as a function of geometry, surface type scattering characteristics, and radar
sensor parameters such as the signal-to-noise ratio. Additionally, the hydrology simulator can incorporate

Figure 1. Sacramento River study area with the superimposed SWOT ground track (dashed line) and KaRIn swath. The
Sacramento study area extends from 3885405800N to 3984501400N and from 1228401900W to 12184605100W.
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attitude errors caused by spacecraft roll, and instrument errors. The simulator smooths the noisy interfero-
gram through a process called ‘‘multilooking,’’ in which four, as used in the present work, or more looks are
used to reduce observational noise and build the multilooked interferogram. The multilooked power is then
used for water detection, while the interferometric phase is used for height reconstruction and geolocation.
Geolocation allows the construction of simulated pixel clouds, in which geolocated points with associated
areas contain attributes including height and surface type, which can assume various classes, including inte-
rior water, water near land edge, and land near water (Figure 3a).

2.3. Processing of Simulated SWOT Data
Pixel clouds generated by the SWOT hydrology simulator are collections of all geolocated points, com-
monly referred to as pixels, obtained during a satellite overpass. These points are presented in a geo-
graphical coordinate system, i.e., longitude, latitude, and elevation above the ellipsoid, in our case,
WGS84, and carry information on the surface area and type associated with the point. Figure 3a shows an
example of a simulated pixel cloud generated over the Sacramento River and colored according to sur-
face type. In order to allow the construction of water surface profiles and the application of one-
dimensional discharge equations, the pixel cloud coordinate system must be simplified from its three-
dimensional format to flow distances and water surface elevations, with the latter preferably being with
respect to a geoid.

We executed this transformation using the RiverObs software package developed by the JPL. RiverObs
translates the three-dimensional pixel cloud into a series of nodes located along the river centerline (shown
in Figure 3b) containing node-averaged water heights and river widths in a process called vectorization. For
the initial centerlines, we used the Global River Width from Landsat (GRWL) database (Allen & Pavelsky,
2015a) produced as described by Allen and Pavelsky (2015b). As RiverObs ingests a pixel cloud, it searches
for water pixels located within a user-specified distance from the initial centerline. The centroid of the water
pixels located within this search window can be used to improve the initial definition of the river centerline,
in a process called centerline refinement. For the present work, we refined river centerlines using a low flow
overpass, to avoid deviations in the centerline caused by out-of-bank flows or inundation of secondary
channels, and then used this refined centerline for processing all passes.

Node-averaged widths and heights are calculated from water pixels located within the RiverObs search win-
dow. Water pixels found inside the RiverObs search window are assigned to their respective nearest node
along the river centerline. The heights of the pixels are averaged to produce the node-averaged water

Figure 2. Po River study area with superimposed SWOT ground track (dashed line) and KaRIn swaths used in our study. The Po study area extends from
4485202700N to 45850400N and from 1084405500E to 128203800W.
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surface elevation, whereas the inundated area associated with the selected pixels divided by the node dis-
tance is used to calculate the width at that node.

For the Sacramento River, we utilized a fixed search window of 400 m, which is 2 to 4 times the average
channel width during the simulated period. For the Po River, we utilized 800 m (twice the average width)
for all but the three highest flows, during which we increased the search window to 2,500 m, i.e., 4.5 times
the average river width during the high discharge events. The vectorization of the pixel clouds covering the
Sacramento and the Po Rivers yielded 747 and 582 nodes, respectively, which were spaced approximately
200 m apart.

2.4. River Reach Definition
We compared three different river segmentation strategies used to group RiverObs nodes into reaches: (1)
reaches of arbitrary (fixed) lengths (section 2.4.1), (2) hydraulic control reaches (section 2.4.2), and (3) Sinu-
osity based reaches (section 2.4.3). In the first, we simply break up reaches at regular intervals measured
along the rivers’ centerlines. The second strategy consists of identifying hydraulic controls by searching for
inflection points on the water surface profile (WSP). The third strategy takes into consideration river plan-
form features, breaking up reaches according to channel sinuosity, defined here as the ratio between the
river length measured along its centerline and the corresponding straight-line distance. Additionally, we
added reach boundaries at intersections between the river centerlines and SWOT swaths. Following the def-
inition of the reach boundaries, we calculated reach-averaged width, height, and slope (section 2.6).

Figure 3. (a) Pixel cloud produced by the SWOT instrument simulator for a section of the Sacramento River. Pixel colors reflect their classification into: interior
water (water pixels with water neighbors), water near land (water pixels with at least one land pixel neighbor), and land pixels. (b) River nodes produced by River-
Obs, containing information on the average height and width of surrounding pixels, as well as their corresponding standard deviations.
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2.4.1. Arbitrary Reach Definition Method
For this reach definition method, we segmented the river into reaches of equal, arbitrary lengths. Additional
reach boundaries were located at SWOT swath boundaries, known hydraulic structures, and, if it were the
case, location of major confluences. We tested different lengths for the arbitrary reaches, which we varied
from 2 to 25 km to evaluate the impact of reach length on the accuracy of reach-averaged products. We
evaluated the height and width errors obtained under the different reach lengths and contrast the esti-
mated slope errors against the expected slope accuracies specified by the SWOT mission performance and
error budget document (Esteban-Fernandez, 2013) for different reach lengths and river widths. Finally, we
estimated the effects of errors on SWOT observations, i.e., reach-averaged heights, widths, cross-sectional
area changes, and slopes into the reach-averaged discharge.
2.4.2. Hydraulic Controls Reach Definition Method
As with the arbitrary reach definition method, we placed reach boundaries at known hydraulic structures,
confluences, and swath edges. Subsequently, we utilized simulated SWOT water surface height measure-
ments to identify the location of hydraulic controls, which served as additional reach boundaries. The
method builds upon the classification of gradually varied flow profiles presented by Chow (1959), which cat-
egorizes flow regimes based on the longitudinal profiles of the water surface and the channel bottom.
According to the channel bottom slope, the profiles can be characterized as horizontal, mild, critical, steep,
or adverse. These classes are further broken down into zones 1, 2, and 3, depending on the value of the
actual depth with respect to the normal and critical depths. The locations where the channel class changes
mark the location of hydraulic controls, which govern the upstream flow for subcritical flows (Froude num-
ber smaller than 1) or downstream for supercritical flows.

The exact classification of the flow profiles requires the determination of the normal, critical, and actual
depths, which cannot be determined without in situ data. However, each type of flow profile is associated
with a water surface concavity, which one can estimate from SWOT returns. We assume that for reaches
with length scales on the order of kilometers and larger as defined in the SWOT science mission require-
ments (Rodr�ıguez, 2015), the prevalent gradually varied flow classes are M1 (mild slope with actual depth
greater than the normal depth) and A2 (adverse slope with actual depth greater than the critical depth). As
shown in Figure 4, such simplification allows the differentiation between classes to rely solely on the sign of
the second derivative of the water surface profile with respect to the flow distance, with concave profiles
being classified as M1 and convex profiles as A2. Following this formulation, changes in concavity sign mark
the location of hydraulic controls, which govern the upstream flow up to the previous control point, there-
fore representing ideal locations for the placement of reach boundaries.

The hydraulic controls method (hereafter referred as HC) comprises two main steps: the first is to identify
unknown hydraulic structures by searching for backwater followed by sudden drops in the water surface
elevation; the second step entails the search for transitions between flow profile types, marked by inflec-
tion points on the water surface profile. We ran the hydraulic structure identification and the flow classifi-
cation routines using low flow overpasses, during which the WSP is more sensitive to changes in
bathymetry.

Figure 4. Idealized response of water surface profiles to the most frequently observed channel flow profiles. Adapted
from Chow (1959) and Chin (2006).
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In order to highlight the signature of hydraulic structures and the location of the WSP inflection points, we
averaged node elevations among multiple low flow profiles. For the identification of hydraulic structures and
the identification of inflection points on the WSP of the Sacramento River, we utilized the average of the six
lowest discharge simulated SWOT overpasses, when discharges varied from 118 to 189 m3 s21. For the Po
River, we utilized three simulated SWOT overpasses for the classification of the water surface profile (dis-
charges varying from 697 to 747 m3s21). Although the Po River study area did not contain any dams or brid-
ges, we still ran the hydraulic structure detection algorithm with the objective of assessing the possibility of
false positives, a situation when the algorithm incorrectly detected nonexistent discontinuities on the WSP.
For the assessment of false positives, we tested low flow profiles built using averages of 2–10 overpasses.

The identification of hydraulic structures consists of a search for backwater followed by sudden drops in
water surface elevation. The procedure entails the execution of two separate linear regressions, the first
using n nodes located upstream from the examined location and the second, using n nodes located down-
stream. We use both regression lines to predict the water surface elevation at the examined point and use:

ysup 5ŷ1t� � SEŷ

yinf 5ŷ2t� � SEŷ

(3)

to produce confidence intervals for the two predictions. In equation (3), ysup and yinf represent the superior
and inferior limits of the confidence interval, respectively, ŷ stands for the water surface elevation at the
examined point (x* along the longitudinal profile) predicted by the respective linear regression equation, t*
represents the value of the t-statistic for the desired confidence level and n 2 2 degrees of freedom, and
SEŷ is the standard error for the prediction of ŷ , calculated by:

SEŷ 5s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11

1
n

1
x�2�xð Þ2Xn

i51

xi2�xð Þ2
h i

vuuuut (4)

where �x represents the average flow distance of the subset of n nodes used in the construction of the confi-
dence intervals and s is the regression standard error given by:

s5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n22
�
Xn

i51

yi2ŷ ið Þ2
h is

(5)

In equation (5), n is the number of considered nodes, yi is the observed water surface elevation at node i,
and ŷ i is the predicted elevation at node i.

During the search for water surface drops, we built two subsets of 25 nodes, one located upstream and the
second located downstream of the investigated location, each with a subset with a length similar to the cho-
sen minimum reach length of 5 km, and an associated confidence interval of 85%. If the confidence intervals
do not overlap, there is evidence that a discontinuity on the water surface profile exists at that location, in
which case we check if the water surface slope upstream from detected discontinuity is flatter than the water
surface slope downstream from the candidate location. Similar to the detection of discontinuities, we built
85% confidence intervals for the upstream and downstream slopes using equations (5) and (6), which are also
employed in the identification of hydraulic controls. If the confidence intervals did not overlap and the slope
downstream was steeper than the upstream slope, we flagged that location as a hydraulic structure. If contig-
uous discontinuities are identified, we select the location with the highest vertical drop. The positions of dis-
continuities are assumed to control the upstream flows and therefore are selected as reach boundaries.

In the following step, we search for hydraulic controls defined by changes in the sign of the second deriva-
tive of the water surface elevation with respect to flow distance (concavity) at each river node. Our method
estimates the concavity at a node by taking the difference between the downstream and upstream slopes
divided by the distance between the centroids of the up and downstream subsets of nodes. The number of
nodes used in the subsets is determined by successively estimating confidence intervals (CI) for the
upstream and downstream slopes and increasing the number of nodes until the slope CIs no longer over-
lap. We construct confidence intervals for the slopes of the upstream and downstream subsets using equa-
tion (5):
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CI5b 6 t�SEb (6)

where b stands for the linear regression slope, t* is the value of the t-statistic for the desired confidence
interval and n 2 2 degrees of freedom, and SEb represents the standard error of the least squares slope,
which we calculate with:

SEb5
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i51

xi2�xð Þ2
h is (7)

where s is estimated by equation (5).

If the two confidence intervals overlap, we assume that the two slopes are indistinguishable, therefore, we
add n/2 nodes to both subsets and reevaluate their confidence intervals until they no longer overlap. Once
the difference between slopes is statistically significant, we estimate the concavity c with equation (7):

c5
bdown2bup

d
(8)

where bup and bdown are the up and downstream regression slopes and d is the flow distance between the
centroids of the two subset of nodes. The regression slopes used in equation (8) do not have the same sign
convention as river slopes as bup and bdown are negative for decreasing elevations with increasing flow dis-
tances. For this analysis, we utilized an initial number of up and downstream nodes equal to 10 and a 95%
confidence level for the computation of the regression slopes’ confidence intervals.

Subsequently, we search for sign reversals in the water surface concavity, which combined with the location
of hydraulic controls and swath boundaries constitute the reach boundaries. As a last step, we impose mini-
mum reach length requirements. Initially, we sort reaches by length and check if the shortest reach meets
the reach length requirements. If the shortest reach is shorter than a minimum reach length of 5 km, we
check which of its immediate neighbors has an average concavity closer to the reach in question, to which
the short reach is merged. The reaches are resorted by length and the procedure is repeated until reaches
meet the minimum length requirements. The exceptions to the minimum reach length requirements are
boundaries defined by hydraulic structures and swath boundaries.

The HC method is automated. Once the confidence intervals, the number of nodes, and overpasses for the
identification of hydraulic structures and transition between flow profile classes and the minimum reach
length are set, no human inputs are required. A prototyped algorithm for the HC method is included with
this manuscript as supporting information (S1).
2.4.3. Sinuosity Reach Definition Method
The sinuosity method allows the definition of reach boundaries based solely on the examination of the river
centerline, which can be delineated with existing data, such as Landsat imagery, or the method can make
use of refined centerlines once SWOT data are available. As the sinuosity method does not require SWOT
observations, it can be applied before the beginning of the mission and it offers the possibility of expediting
initial releases of reach-averaged SWOT products. The method has three inputs: river centerline, SWOT
swaths, and an optional input of known hydraulic structures. Essentially, the method searches for areas with
similar sinuosity subjected to a minimum reach length, in addition to placing reach boundaries at locations
where the centerline crosses swath boundaries and at known hydraulic structures and confluences.

Similar to Leopold & Wolman (1957), we defined sinuosity as the ratio between river length and downvalley
length, which is computed with equation (8):
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where Sk stands for the sinuosity at the node k, m stands for the number of nodes used in the computation,
where if m/2 is not an integer number, it is rounded toward minus infinity, No stands for the northing and E
for the easting according to the appropriate conformal projection. The number of nodes used for the
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sinuosity computation depends on the minimum reach length and the average width of the river. We calcu-
lated m by ensuring that flow distance covered in the sinuosity computation matched the minimum reach
length or at least of 10 times the bankfull width of the river as suggested by Kiel (2015). The minimum reach
length of 5 km under a node spacing of 200 m led to the use of 25 nodes. For both the Po and the Sacra-
mento Rivers, the minimum reach length was the determining factor in the estimation of the number of
nodes used in the computation of the sinuosity.

We defined areas of similar sinuosity as the locations between local maxima or minima of the first derivative
of the sinuosity with respect to flow distance, which we identified by searching for sign reversals in the sec-
ond derivative of sinuosity with respect to flow distance. As with the Hydraulic controls method, the first
and second derivatives of channel sinuosity are calculated with equations (3) and (4), respectively, consider-
ing upstream and downstream subsets of nodes as long as the minimum reach length of 5 km. Subse-
quently, we imposed the minimum reach length of 5 km by merging the shortest reaches with one of their
neighbors, either the immediately up or downstream reach. Similar to the HC merging method, the selec-
tion of which neighbor to use depended on whether the upstream or downstream sinuosity was more simi-
lar to the sinuosity of the merging reach. The merging procedure was repeated until all reaches had lengths
greater than or equal to the specified minimum reach length. Nevertheless, reaches defined by swath
boundaries and known hydraulic structures were not subject to the minimum reach length criterion. A pro-
totyped algorithm for the sinuosity method is included with this manuscript as supporting information (S2).

2.5. Water Surface Smoothing
We applied two different methodologies to mitigate the noise observed in the simulated SWOT measure-
ments of heights at the node level. The first, which we applied in conjunction with the arbitrary reach defini-
tion scheme, entails the use of a moving average window with the same length as the reach length and
with Gaussian weights to smooth node heights. In this methodology, all nodes lying 5 km upstream or 5 km
downstream from the current node contribute to the calculation of that node’s height. The Gaussian curve
used to assign the weight to each node property was adjusted such that a node located 2 km up or down-
stream from the center of the window would correspond to being located one standard deviation away
from the center of a standard normal curve.

The second methodology, used in conjunction with sinuosity and hydraulic controls reach definition
schemes, consists of using an adaptive Gaussian averaging window to smooth node heights. The method
changes the Gaussian average window to match the length of the reach that contains the central node.
Additionally, we set the Gaussian window standard deviation to 1/5 of the reach length, with a minimum of
1 km. Using the adaptive window size provides a compromise between decreasing data noise and preserv-
ing the shape of the water surface profile. Although the adaptive Gaussian window allows the use of infor-
mation from nodes located outside of the reach, the averaging window is not allowed to cross boundaries
defined by hydraulic structures.

2.6. Reach Averaging
We calculated reach-averaged heights by averaging the smoothed heights of nodes contained within reach
boundaries and estimated the reach-averaged widths by dividing the inundated area in a reach by the
reach length. Subsequently, we obtained reach-averaged slopes by dividing the elevation lost throughout
the reach by the reach length. For the estimation of the reach-averaged cross-sectional area, we proceeded
as in Durand et al. (2014). We express the cross-sectional area of the reach i, during the overpass j, Ai,j, in
terms of the reach’s cross-sectional area below the minimum recorded elevation, Ai,o, and the associated
change in cross-sectional area between the minimum recorded stage and the overpass j (dAi,j), which
leads to:

Ai;j5Ai;01dAi;0 (10)

The cross-sectional area formulation expressed in equation (10) is convenient, as it separates Ai,j into an ele-
ment that cannot be observed with SWOT (Ai,o) and the areal change (dAi,o), which can be estimated directly
from SWOT observations. If yi,j, and wi,j, are the reach-averaged water surface elevation and width for the
reach i during overpass j and yi,0 and wi,0 are the reach-averaged water surface elevation and width for the
same reach during the minimum recorded elevation, then dAi,j can be estimated with:
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dAi;j5
wi;01wi;j

2
� yi;j2yi;0
� �

(11)

The estimation of Ai,o and the effective Manning’s roughness coefficient for a reach, named ~n as in Durand
et al. (2014), is more complex than previously mentioned reach-averaged quantities, as they cannot be
derived directly from SWOT measurements. During the SWOT mission, unobservable parameters such as ~n
and Ai,o needed for the computation of discharge will be estimated through one or more algorithms.
Among the existing discharge algorithms whose performance was assessed by Durand et al. (2016), GaMo
(Garambois & Monnier, 2015), MetroMan (Durand et al., 2014), and mean flow and constant roughness algo-
rithm (MFCR method is similar to the framework presented in Smith et al., 2015) estimate both Ai,o and ~n
(with the exception of MFCR that uses a constant ~n) with the purpose of calculating reach-averaged
discharges.

To untangle the uncertainties inherent to the different discharge algorithms from the effects of reach defini-
tion strategies, we opted to use cross-sectional areas taken from the Sacramento River and the Po River
hydraulic models during the minimum recorded elevation to estimate the Ai,o. Additionally, we used dis-
charge, width, slope, and cross-sectional area computed from the hydraulic models for each reach and for
each overpass to estimate the corresponding effective roughness coefficient. We estimated ~ni;j , the effec-
tive roughness coefficient for the reach i during overpass j, by solving Manning’s equation for ~ni;j :

~ni;j5
1

Qi;j
� Ai;01dAi;j
� �5=3

w22=3
i;j S1=2

i;j (12)

and using the true reach-averaged values of width (wi,j), area (Ai,o1dAi,j), water surface slope (Si,j), and dis-
charge (Qi,j).

Subsequently, we used the estimated ~ni;j , Ai,o, alongside synthetic measurements of reach-averaged width
ŵ i;j , water surface slope Ŝ i;j , and change in cross-sectional area dÂi;j to calculate reach-averaged discharges
Q̂i;j . For the discharge estimation, we used Manning’s equation, assuming that the friction slope can be
approximated by the water surface slope and that the reach-averaged width is much larger than the depth,
reducing the wetted perimeter to the value of the river width. Under such assumptions, Manning’s equation
can be written as:

Q̂i;j5
1

~ni;j
� Ai;01dÂi;j
� �5=3

ŵ 22=3
i;j Ŝ

1=2
i;j (13)

where, variables accompanied by the hat symbol denote values derived from the synthetic SWOT
observations, with the exception of discharge, as it also depends on the unobservable values of ~ni;j ,
Ai,o. A prototyped algorithm for reach averaging is included with this manuscript as supporting infor-
mation (S3).

2.7. Error Metrics
We evaluated the performance of the reach definition methods in terms of root-mean-square errors (RMSEs)
computed per overpass (RMSET, equation (13)) and per reach (RMSEL, equation (14)). For the computation of
the per pass RMSET, we considered differences between reach-averaged synthetic SWOT measurements
and reach-averaged values computed from the river models, resulting in one RMSE value per overpass per
river. We calculated the RMSET for an overpass j with:

RMSET ;j5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nr;j

XNr;j

i51

v̂ i;j2vi;j
� �2

vuut (14)

where v̂ i;j is the evaluated variable (height, slope, and discharge) at reach i and overpass j, Nr,j is the number
of reaches observed during the overpass j, and vi,j is the reach-averaged truth calculated from the hydraulic
simulation of the river for the evaluated variable at the reach i and overpass j.

The RMSEL accounted for errors across the Nover overpasses, producing one error estimate for each reach,
which we used for the analysis of impacts of reach length into reach-averaged products. The RMSEL for
each reach i was computed with:
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RMSEL;i5
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where v̂ i;j is the evaluated variable (height, slope, width, and discharge) at reach i and overpass j.

We assessed reach-averaged width errors and the impact of reach-averaged height, width, cross-sectional
area change, and slope errors into discharge in terms of relative RMSE (rRMSE) using equations (15) and (16):

rRMSET ;j5
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rRMSEL;i5
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Similarly to RMSET and RMSEL, rRMSET and rRMSEL represent an aggregation of errors in space and time,
respectively.

3. Results and Discussion

3.1. Comparison of the Reach Definition Strategies
Several authors have established relationships between river planform, cross-sectional geometry, and water
surface profile shape (e.g., Ikeda, 1984; Ikeda et al., 1981; Odgaard, 1986; Odgaard & Abad, 2008; G. Parker
et al., 1983; Rosgen, 1994). Therefore, we expected to observe some correspondence between boundaries
identified by sinuosity and by hydraulic controls. Table 1 presents the minimum, mean, and maximum reach
lengths under the HC and sinuosity method, demonstrating that in terms of reach length statistics, both
methods lead to similar outcomes. There are also similarities in the location of reach boundaries generated
by both methods. Table 2 summarizes the comparison between reach boundaries defined by sinuosity and
HC methods by computing how many reach boundaries were located within 1, 2, and 3 km of each other,
with distances measured along the centerlines of the rivers. Table 3 shows the locations of the hydraulic
structures included in the Sacramento River model.

Comparing the reach boundaries identified by the sinuosity and the HC methods for the Sacramento River
(Figures 5a–5c), we see correspondences at 0, 12.4, 54.0, 60.0, 82.5, 89.0, 137.2, and 151.8 km, where reach
boundaries defined by both methods are located within 1 km of each other. From this list, only three
boundaries were defined by the swath’s edge, i.e., 0, 117, and 151.8 km, indicating that SWOT might be
able to observe connections between river sinuosity and hydraulic characteristics of rivers. Coincidences
between river boundaries defined by both methods occur more frequently in the first 90 km of the Sacra-
mento River, where the channel slope is steeper and concavities in the water surface profile are more pro-

nounced than on the downstream section of the river. While decreasing the
minimum reach length for the HC and sinuosity routines from 5 to 2 km
increases the number of coinciding boundaries, leading to 20 coincidences
(within 1 km) out of a total of 40 boundaries defined using inflection points in
the WSP and sinuosity, the shorter reach lengths would result in higher
height, width, and slope errors.

The correspondence between the two methods was not as good for the Po
River (Figures 5d–5f and Table 2) when using the adopted minimum reach
length of 5 km. The correspondence between the HC and the sinuosity meth-
ods appears to be affected by the minimum reach length. For example,
decreasing the minimum reach length requirements from 5 to 2 km led to a
considerable increase in the similarity between reach boundaries defined by
both methods. After the decrease, on the upstream swath of the Po River, 11
boundaries defined by inflection points in the WSP and sinuosity profiles
were within 1 km of each other, which corresponds to 55% of the reach
boundaries under the shorter minimum reach length requirements. The

Table 1
Comparison of Reach Lengths Originated From the Sinuosity and
Hydraulic Controls Reach Definition Strategies

River

Minimum
reach length

(km)

Mean
reach

length (km)

Maximum
reach

length (km)

Sinuosity
Po 5.0 8.4 13.4
Sacramento 5.7 8.9 16.2

Hydraulic controls
Po 5.4 9.1 14.0
Sacramento 5.2a 8.3 14.6

aThe Sacramento River, under the HC method had two reaches
under the minimum reach length, one with a length of 1 km and a
second with a length of 4.9 km caused by swath edges and one
detected structure.
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downstream swath saw little improvement in the correspondence
between river segmentation methods, likely due to the smaller varia-
tion in both sinuosity and in water surface concavity, which implies
weaker hydraulic controls.

3.2. Evaluation of the Simulated Reach-Averaged Products
3.2.1. Height
The overpass-based RMSET revealed that height errors depend on dis-
charge for both Sacramento (Figure 6a) and Po (Figure 6b) Rivers, with
increasing discharges leading to smaller RMSEs. The decrease in RMSET

can be partially explained by decreasing biases observed during the
higher discharges shown in Figures 6e and 6f for the Sacramento and
Po Rivers, respectively. Higher biases during lower discharges that dis-
appear as water level rises are an indication of terrain layover, a situa-
tion when the radar return from the water surface and the
surrounding terrain reach the satellite simultaneously. As the returns
from the different targets are registered at the same time, the targets

become indistinguishable, effectively obscuring the lower elevation targets, and potentially leading to posi-
tive biases, i.e., overestimation of the water elevation.

Terrain layover is more likely to occur when a terrain feature such as levees bordering a river have a slope
higher than the local sensor look angle. Whether a terrain slope will lead to layover depends on the orienta-
tion of the river with respect to the swath and on the position of the target with respect to the swath, i.e.,
slope greater than 0.68 in the near range or greater than 3.98 in the far range, (Fjørtoft et al., 2014). As the
water level increases, the difference in elevation between the levees and the water surface decreases,
diminishing the impact of terrain on the estimation of the target’s elevation. The higher height biases
observed on the Sacramento River as opposed to those observed on the Po River (Figures 6e and 6f) illus-
trate the effect of the orientation of the river with respect to the swath. Levees running in parallel to the
swath are at the most disadvantageous conditions, as is the case for a considerable fraction of the Sacra-
mento River (Figure 1), whereas levees perpendicular to the swath, as is the case of the Po River (Figure 2)
have considerably smaller layover effects.

We further examined the possibility of terrain layover causing the height biases by excluding pixels classi-
fied as ‘‘water near land edge,’’ i.e., a water pixel with at least one neighbor classified as land, and comput-
ing node height only from pixels identified as ‘‘interior water,’’ i.e., a water pixel surrounded only by other
water pixels. The exclusion of water near land edge pixels was effective in remediating the overestimation
of the Sacramento River water surface elevation. As interior water pixels are less likely to contain mixed
land and water returns, they are less prone to layover errors. Therefore, the observed decrease in height
biases when using only interior water pixels is an indication that terrain layover caused a substantial part of
the observed overestimation of the water surface elevation particularly during low flow conditions. How-
ever, we identified two major consequences of the exclusion of water near land edge pixels: (1) some nodes
(11 during the lowest flow condition, 7 during average flow, and 1 during the highest discharge) had no

Table 2
Comparison of the Locations of the Sinuosity and Hydraulic Controls Defined
by Inflection Points in the Sinuosity and Water Surface Profile, respectively

River Within 1 km Within 2 km Within 3 km

Sinuosity and HC boundaries located
Po 3 5 7
Sacramento 6 8 10

Fraction of number of reaches
Po 27% 45% 64%
Sacramento 40% 53% 67%

Note. The HC method identified 15 reaches for the Sacramento River and
11 for the Po River due to inflection points in the WSP. The sinuosity
method identified 15 reaches for the Sacramento River and 12 reaches for
the Po River due to inflection points in the sinuosity profile. This table does
not consider reach boundaries due to Swath edges, as they are identical
for all methods by definition

Table 3
Location of the Head Losses Present in the Sacramento River Study Area

Water surface elevation (m)

Drop (m) Latitude Longitude NotesUpstream Downstream

39.03 38.9 0.13 3984500400N 12185904900W Highway 32 bridge by Hamilton City
29.75 29.6 0.15 3983704500N 12185903100W Old ferry road bridge by Ordbend
21.32 21.19 0.13 3982702600N 12185904200W Biggs-Willows road bridge
12.81 12.51 0.30 3981205100N 1228W River road bridge at Colusa
11.82 10.92 0.90 3980804500N 12185500500W State highway 20 bridge at Meridian

Note. The water surface elevation drops were in respect to the day 23, the lowest flow in the simulated period, with
an average discharge of 118 m3 s21.
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Figure 5. (a) Sacramento River centerline with superimposed location of hydraulic structures, hydraulic control reaches, and sinousity reaches. (b) Sacramento River
sinuosity and locations of the river reach boundaries. (c) Sacramento River’s water surface profile with color-coded concavity signals. (d) Po River centerline with reach
boundaries. (e) Po River sinuosity and the location of river reach boundaries. (f) Po River’s water surface profile with color-coded concavity signals. Succession between
white and grayed areas in Figures 5b, 5c, 5e, and 5f denote different reaches. The discontinuity in Figures 5d–5f occurs due to the swath gap, as shown in Figure 2.
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Figure 6. (a) Reach-averaged height RMSE computed for all reaches with length greater than 3 km for each one of the nine overpasses at the Sacramento River
versus the average discharge during the overpass. (b) Reach-averaged height RMSE computed for all reaches with length greater than 3 km for each one of the 14
overpasses at the Po River versus the average discharge during the overpass. (c) Time-averaged RMSE of reach-averaged heights at the Sacramento River versus
reach length. (d) Time-averaged RMSE of reach-averaged heights at the Po River versus reach length. (e) Height bias versus average discharge for the Sacramento
River. (f) Height bias versus average discharge for the Po River.
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valid height measurements and (2) as fewer points are available for averaging, the random component of
the error increases.

Comparing the Sacramento River reach-averaged height RMSET (Figure 6a) produced with the arbitrary
10 km reaches, sinuosity, and HC methods, we see that despite the shorter average reach lengths generated
by the sinuosity and the HC methods (Table 1), the three methods had comparable performances. During
low flows, the sinuosity method, which applies an adaptive Gaussian window moving average to smooth
the water surface, had slightly better performance than the arbitrary 10 and 20 km reaches. For the Po River,
both HC and sinuosity methods outperformed the arbitrary 10 km reaches and, during high flow, the arbi-
trary 20 km reaches.

Figures 6c and 6d show the effect of reach length on the reach-averaged height RMSEL for the Sacramento
and the Po Rivers, respectively. Analyzing the behavior of the arbitrary reach definition methodology, we
see that increasing reach length decreases RMSEs for both rivers. Decreasing errors with increasing reach
lengths is not as visible on the Sacramento River (Figure 6c), as random errors are much smaller than sys-
tematic errors for this river, especially during lower discharges. This is expected, as averaging effectively
reduces the random component of the error, while leaving the biases unmitigated. Figures 6c and 6d also
show that there is a limit to how much of the random errors can be eliminated through the increase of
reach length and that this limit is reached faster for the Sacramento River (�15 km) than for the Po River
(>25 km).

The analysis of the impact of reach length on the reach-averaged height RMSET produced by the sinuosity
and the hydraulic controls method is more difficult as these methods generate reaches with different reach
sizes. However, it appears that both methods show a trend of decreasing height errors with increasing
reach lengths. Moreover, Figures 6c and 6d appear to indicate that as reach length increases, height errors
tend to become more stable and predictable.
3.2.2. Width
With respect to reach lengths, reach-averaged width errors behaved similarly to reach-averaged heights. As
the reach length increased, the relative RMSEL (rRMSEL) decreased with most of the benefit in increasing the
reach length being achieved at approximately 10 km (Figures 7a and 7b). The Po River showed a similar
decrease in width rRMSEL up to 15 km, after which this error metric became less descriptive (Figure 7b). Fig-
ures 7c and 7d show a direct comparison of simulated SWOT reach-averaged widths and true widths for all
synthetic overpasses.

An accurate comparison between inundated width as potentially observed by SWOT and the cross-
sectional ‘‘wetted’’ width as produced by a 1-D hydraulic model, e.g., top width in HEC-RAS, is not straight-
forward. The two parameters are not always commensurate in hydrodynamic terms. Complications arise
due to a multitude of reasons including: the discrete width sampling at the hydraulic model cross sections,
which can overemphasize or underemphasize the inundated floodplain, mismatches in the location of the
centerlines leading to different definitions of width, nonlinear cross sections in the hydraulic model, and
others. A more direct comparison could be derived by overlaying inundated area, or width thereof, as
observed by SWOT with that simulated by a 2-D flood inundation model. However, such an evaluation is
only tangentially relevant to the evaluation of reach definition strategies and outside of the scope of the
present work.
3.2.3. Slope
Compared to height and width, overpass-based reach-averaged slope errors (RMSET) were more robust with
respect to discharge for both Sacramento and Po Rivers (Figures 8a and 8b). For both Po and Sacramento
Rivers, reach-averaged slopes produced by the sinuosity method were considerably better than those gen-
erated by the arbitrary 10 km reaches method, despite having shorter average reaches. For the Sacramento
River, HC and arbitrary 10 km reaches slopes were comparable, whereas for the Po River, HC and sinuosity
slopes were comparable to each other and both where considerably superior to arbitrary 10 and 20 km
slopes.

As expected, slope errors showed a strong relationship with reach length (Figures 8c and 8d). The SWOT
mission performance error budget document (Esteban-Fernandez, 2013) states that, in the absence of lay-
over errors, error variance (r2

slope) can be predicted by equation (2). Although the equation that describes
slope dependency on river width and reach length presented in the science requirements document
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(Rodr�ıguez, 2015) supersedes equation (2), we chose to compare our slopes with the older equation, as it
was derived assuming height smoothing and is, therefore, more compatible with our methodology than
the newer equation presented by Rodr�ıguez (2015). Even though RMSEL reflects a combination of bias and
random errors, sinuosity and HC slope RMSEL were mostly the same or below the slope error standard devia-
tion (rslope) calculated from the square root of equation (2) (Figures 8c and 8d).
3.2.4. Discharge
Figure 9 shows how height, width, and slope errors propagate into discharge for the different reach defini-
tion strategies. Figures 9a and 9b show how discharge rRMSET respond to average discharge in the river,
whereas Figures 9c and 9d show the effect of reach length into rRMSEL. As with height, slope, and to a cer-
tain extent width, longer reaches lead to lower discharge errors (Figures 9c and 9d), with most of the bene-
fits from using longer reaches being achieved once reaches are approximately 15 km in length for the
Sacramento River, and 10 km in length for the Po River.

For both rivers, most of the discharge errors due to direct SWOT observations amount to less than 11% of
the river discharge. The exceptions occur for the Po River during the highest discharge event, which can be
traced back to underestimation of river width during this event. Errors due to direct SWOT observations led
to similar discharge errors under the arbitrary 10 km reaches and sinuosity methods for the Sacramento

Figure 7. (a) Time-averaged rRMSE of reach-averaged width at the Sacramento River versus reach length. (b) Time-averaged rRMSE of reach-averaged width at the
Po River versus reach length. (c) Reach-averaged widths versus true reach-averaged widths for the Sacramento River. (d) Reach-averaged widths versus true reach-
averaged widths for the Po River.
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River; whereas the HC outperformed discharge estimates from the 10 km arbitrary reaches during eight out
of the nine examined synthetic overpasses despite the shorter HC average reach length. For the Po River,
with the exception of the three lowest events, HC and sinuosity reaches led to discharge estimates with
error characteristics equal or better than those obtained with 10 and 20 km arbitrary reaches. This is encour-
aging as it shows that ‘‘smart’’ reach definition strategies could allow the use of shorter reach lengths while
keeping errors comparable to arbitrary reaches with longer lengths.

For the Sacramento River, discharge errors due to SWOT measurement uncertainty were lower and more
predictable for arbitrary 20 km reaches than they were for HC and Sinuosity reaches. The longer reach
lengths were particularly effective in reducing the random component of the slope errors for the Sacra-
mento River, which led to the observed decrease in discharge overpass-based reach-averaged relative
RMSET. This was not the case with the Po River, which is considerably wider than the examined segment of

Figure 8. (a) Reach-averaged slope RMSE computed for all reaches with length greater than 3 km for each one of the nine overpasses at the Sacramento River
versus the average discharge during the overpass. (b) Reach-averaged slope RMSE computed for all reaches with length greater than 3 km for each one of the 14
overpasses at the Po River versus the average discharge during the overpass. (c) Time-averaged RMSE of reach-averaged slope at the Sacramento River versus
reach length. (d) Time-averaged RMSE of reach-averaged slope at the Po River versus reach length. Theoretical curves as derived in the SWOT mission performance
and error budget document (Esteban-Fernandez, 2013) in the absence of layover errors.
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the Sacramento River and allows for more averaging across the river width, thus requiring less averaging
along the river length to mitigate measurement noise.

Overpass-based reach-averaged relative RMSET (rRMSET) showed opposite behaviors for the Sacramento
and the Po Rivers (Figures 9a and 9b). While rRMSET initially decreased with increasing discharge for the Sac-
ramento River, it increases for the Po River. Increased errors observed in the Po River are driven by increases
in width and cross-sectional area errors with increasing discharge. Nonetheless, it may be possible to
address increased area errors during overbank flow by reconstructing river bathymetry using multiple over-
passes stacked according to water surface elevation instead of using only heights and widths from the ref-
erence and the current overpasses to calculate the areal change (dAi,o) in equation (10).

As expected, discharge rRMSEL decreased with increasing reach length (Figures 9c and 9d). Comparing the
time-averaged discharge errors for individual reaches produced by the sinuosity and HC methods with

Figure 9. (a) Reach-averaged discharge rRMSE computed for all reaches with length greater than 3 km for each one of the nine overpasses at the Sacramento River
versus the average discharge during the overpass. (b) Reach-averaged discharge rRMSE computed for all reaches with length greater than 3 km for each one of
the 14 overpasses at the Po River versus the average discharge during the overpass. (c) Time-averaged rRMSE of reach-averaged discharge at the Sacramento River
versus reach length. (d) Time-averaged rRMSE of reach-averaged discharge at the Po River versus reach length.
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rRMSEL from arbitrary reaches of compatible sizes, we see that most of the smart reaches had smaller errors
than their arbitrary counterparts. The smaller discharge errors can be traced back to better reach-averaged
heights and slopes produced by the enhanced water surface smoothing technique designed for HC and
sinuosity.

Our evaluation of discharge errors only accounts for uncertainties associated with SWOT observations. As
stated by Yoon et al. (2016), a larger component of the discharge errors are associated with the estimation
of the roughness coefficient (~ni;j) and the unobservable fraction of the cross-sectional area, i.e., Ai,0 in equa-
tions (10) and (13). Therefore, in addition to allowing better water surface smoothing that preserves more
of the river hydraulic properties, which leads to better slope calculation, there could be further benefits to
discharge inversion from using smart reach definition strategies such as changes in sinuosity or the identifi-
cation of the location of hydraulic controls. Ultimately, a comprehensive investigation of the impacts of
reach definition strategies into the efficacy of discharge algorithms including more rivers of different sizes,
slope, planforms, and orientations with respect to SWOT swaths combined with the multiple state-of-the-
art discharge inversion algorithms should support the selection of the river segmentation strategy, or strate-
gies, used throughout the SWOT mission.

4. Conclusion

The choice of river segmentation techniques used to define reaches during the upcoming SWOT mission
will affect the quality of anticipated reach-averaged products. This work evaluates three automated river
segmentation methods by creating a simulated time series of SWOT overpasses with realistic error charac-
teristics covering fractions of the Sacramento and the Po Rivers. By comparing the performance of two
reach definition techniques based on the identification of hydraulic controls and on river sinuosity with
products generated by arbitrary reaches of comparable length, we show the potential advantages of
employing reach definition methods based on detectable hydraulic properties of the river.

The sinuosity and HC methods applied to the Sacramento and Po Rivers produce average reach lengths
smaller than the standard 10 km arbitrary reach length common to other SWOT publications. Nevertheless,
the HC and sinuosity methods consistently result in better reach-averaged slope estimates while producing
reach-averaged water surface heights and widths with errors that are smaller or comparable to those com-
puted with arbitrary 10 km reaches. More importantly, this work shows that when the estimated reach-
averaged height, width, slope, and cross-sectional area errors are propagated to discharge, the HC method
often leads to smaller discharge errors than arbitrary 10 km reaches, whereas the sinuosity method, despite
its shorter reach lengths, led to discharge errors that were comparable to the arbitrary 10 km reaches. More-
over, in the case of the Po River, both sinuosity and HC methods outperformed the arbitrary 20 km reaches
in 9 out of the 14 evaluated overpasses. Such encouraging results indicate that organizing remotely sensed
observations of rivers into reaches that attempt to preserve the hydraulic properties of the rivers will likely
lead to reduced observational uncertainty, better discharge estimation, and to products that are more
meaningful and useful to hydraulic modelers and to the hydrological community. More specifically to
SWOT, the present work shows that it is feasible to apply the sinuosity method for the initial definition of
SWOT reaches using river centerlines derived from existing Landsat imagery, with posterior use of the HC
method for the identification of unlisted hydraulic structures, refinement, and reevaluation of reaches once
SWOT data becomes available.
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