28 research outputs found

    Conditional Sampling for Max-Stable Processes with a Mixed Moving Maxima Representation

    Full text link
    This paper deals with the question of conditional sampling and prediction for the class of stationary max-stable processes which allow for a mixed moving maxima representation. We develop an exact procedure for conditional sampling using the Poisson point process structure of such processes. For explicit calculations we restrict ourselves to the one-dimensional case and use a finite number of shape functions satisfying some regularity conditions. For more general shape functions approximation techniques are presented. Our algorithm is applied to the Smith process and the Brown-Resnick process. Finally, we compare our computational results to other approaches. Here, the algorithm for Gaussian processes with transformed marginals turns out to be surprisingly competitive.Comment: 35 pages; version accepted for publication in Extremes. The final publication is available at http://link.springer.co

    Metastates in mean-field models with random external fields generated by Markov chains

    Full text link
    We extend the construction by Kuelske and Iacobelli of metastates in finite-state mean-field models in independent disorder to situations where the local disorder terms are are a sample of an external ergodic Markov chain in equilibrium. We show that for non-degenerate Markov chains, the structure of the theorems is analogous to the case of i.i.d. variables when the limiting weights in the metastate are expressed with the aid of a CLT for the occupation time measure of the chain. As a new phenomenon we also show in a Potts example that, for a degenerate non-reversible chain this CLT approximation is not enough and the metastate can have less symmetry than the symmetry of the interaction and a Gaussian approximation of disorder fluctuations would suggest.Comment: 20 pages, 2 figure

    Moderate deviations for random field Curie-Weiss models

    Full text link
    The random field Curie-Weiss model is derived from the classical Curie-Weiss model by replacing the deterministic global magnetic field by random local magnetic fields. This opens up a new and interestingly rich phase structure. In this setting, we derive moderate deviations principles for the random total magnetization SnS_n, which is the partial sum of (dependent) spins. A typical result is that under appropriate assumptions on the distribution of the local external fields there exist a real number mm, a positive real number λ\lambda, and a positive integer kk such that (Snnm)/nα(S_n-nm)/n^{\alpha} satisfies a moderate deviations principle with speed n12k(1α)n^{1-2k(1-\alpha)} and rate function λx2k/(2k)!\lambda x^{2k}/(2k)!, where 11/(2(2k1))<α<11-1/(2(2k-1)) < \alpha < 1.Comment: 21 page

    Discrete approximation of a stable self-similar stationary increments process

    No full text
    The aim of this paper is to present a result of discrete approximation of some class of stable self-similar stationary increments processes. The properties of such processes were intensively investigated, but little is known about the context in which such processes can arise. To our knowledge, discretization and con-vergence theorems are available only in the case of stable Lévy motions and fractional Brownian motions. This paper yields new results in this direction. Our main result is the convergence of the random rewards schema first introduced by Cohen and Samorodnitsky, which we consider in a more general setting. Strong relationships with Kesten and Spitzer’s random walk in random sceneries are evidenced. Finally, we study some path properties of the limit process

    A Donsker and Glivenko-Cantelli theorem for random measures linked to extreme value theory

    No full text
    We consider a class of random point measures that share properties with empirical measures when conditioned to another exogenous random phenomenon. We investigate the validity of some Glivenko-Cantelli and Donsker theorems for such random measures. In this setup, we prove that the usual conditions on uniform entropy numbers are strong enough to derive these two theorems. A bootstrap Donsker theorem is also proved. Some applications of these results are also presented in the framework of extreme value theory and nearest-neighbor rules

    Conditional simulation of max-stable processes

    No full text
    corecore