2,133 research outputs found

    Reply to the ‘Critical review on the paper: The earliest datable noctilucent cloud observation (Parma, Italy AD 1840)’

    Get PDF
    In this reply, the aim of the authors is to correct the calculation errors on solar depression angle and azimuth angle as recognized by Dr. Dalin in his critical review. However, these updated and corrected calculations do not affect the possibility for Antonio Colla of having observed the Noctilucent Cloud (NLC) plausible both in the direction and for the duration he described in his observations. In this reply, the authors offer two different interpretations in this regard

    The rise of atmospheric evaporative demand is increasing flash droughts in Spain during the warm season

    Get PDF
    Flash droughts are characterized by rapid development and intensification, generating a new risk for drought impacts on natural and socio-economic systems. In the current climate change scenario, the meteorological drivers involved in triggering flash droughts are uncertain. We analyzed the role of meteorological drivers underlying the development of flash droughts in Spain over the last six decades, evidencing that the effect of atmospheric evaporative demand (AED) on flash drought is mainly restricted to water-limited regions and the warm season. However, the contribution of the AED has increased notably in recent years and particularly in summer (~3.5% per decade), thus becoming a decisive driver in explaining the occurrence of the latest flash droughts in some regions of Spain. Our findings have strong implications for proper understanding of the recent spatiotemporal behavior of flash droughts in Spain and illustrate how this type of event can be related to global warming processes

    Assessment of parametric approaches to calculate the Evaporative Demand Drought Index

    Get PDF
    The Evaporative Demand Drought Index (EDDI), based on atmospheric evaporative demand, was proposed by Hobbins et al. (2016) to analyse and monitor drought. The EDDI uses a nonparametric approach in which empirically derived probabilities are converted to standardized values. This study evaluates the suitability of eight probability distributions to compute the EDDI at 1-, 3- and 12-month time scales, in order to provide more robust calculations. The results showed that the Log-logistic distribution is the best option for generating standardized values over very different climate conditions. Likewise, we contrasted this new parametric methodology to compute EDDI with the original nonparametric formulation. Our findings demonstrate the advantages of adopting a robust parametric approach based on the Log-logistic distribution for drought analysis, as opposed to the original nonparametric approach. The method proposed in this study enables effective implementation of EDDI in the characterization and monitoring of droughts. © 2021 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd on behalf of Royal Meteorological Society

    A shift in the spatial pattern of Iberian droughts during the 17th century

    Get PDF
    In this paper, series of drought occurrence and drought extension in the Iberian Peninsula are constructed for the 1600–1750 period from seven rogation series. These rogation ceremony records come from Bilbao, Catalonia, Zamora, Zaragoza, Toledo, Murcia and Seville. They are distributed across the Peninsula and include the areas with the most characteristic Iberian climate types, influenced by the Atlantic and the Mediterranean conditions, described from modern data. A seasonal division of the series shows that spring is a critical season for rogation series in most of Iberia, being Bilbao the only site were the highest number of rogations is detected for a different season. The annual analysis of the series shows a dramatic difference between the first half of the 17th century when droughts are characterized by its local character; and the rest of the period, when they affect to broader regions or even to the whole Peninsula. The analysis of spring series confirms the existence of the two periods detected in the annual analysis. Finally, secondary documentary sources are used to further characterise the two most extended droughts in the period, 1664 and 1680, and to verify the extension of the areas affected by droughts recorded through rogation series

    The potential of using climate indices as powerful tools to explain mortality anomalies: An application to mainland Spain

    Get PDF
    Changes in the frequency and magnitude of extreme weather events represent one of the key indicators of climate change and variability. These events can have an important impact on mortality rates, especially in the ageing population. This study assessed the spatial and seasonal distributions of mortality rates in mainland Spain and their association with climatic conditions over the period 1979–2016. The analysis was done on a seasonal and annual basis using 79 climatic indices and regional natural deaths data. Results indicate large spatial variability of natural deaths, which is mostly related to how the share of the elderly in the population varied across the studied regions. Spatially, both the highest mortality rates and the largest percentage of elders were found in the northwest areas of the study domain, where an extreme climate prevails, with very cold winters and hot summers. A strong seasonality effect was observed, winter shows more than 10% of natural deaths compared to the rest of the seasons. Also, results suggest a strong relation between climatic indices and natural deaths, albeit with a high spatial and seasonal variability. Climatic indices and natural deaths show a stronger correlation in winter and summer than in spring and autumn. © 2021 The Author

    ECTACI: European Climatology and Trend Atlas of Climate Indices (1979–2017)

    Get PDF
    A fundamental key to understanding climate change and its implications is the availability of databases with wide spatial coverage, over a long period of time, with constant updates and high spatial resolution. This study describes a newly gridded data set and its map viewer “European Climatology and Trend Atlas of Climate Indices” (ECTACI), which contains four statistical parameters (climatology, coefficient of variation, slope, and significant trend) from 125 standard climate indices for the whole Europe at 0.25° grid intervals from 1979 to 2017 at various temporal scales (monthly, seasonal, and annual). In addition, this study shows, for the first time, the general trends of a wide variety of updated standard climate indices at seasonal and annual scales for the whole of Europe, which could be a useful tool for climate analysis and its impact on different sectors and socioeconomic activities. The data set and ECTACI map viewer are available for free (http://ECTACI.csic.es/)

    A comparative study of the incidence of Alternaria Conidia in the atmosphere of five spanish cities

    Get PDF

    The uncertain role of rising atmospheric CO2 on global plant transpiration

    Get PDF
    As CO2 concentration in the atmosphere rises, there is a need for improved physical understanding of its impact on global plant transpiration. This knowledge gap poses a major hurdle in robustly projecting changes in the global hydrologic cycle. For this reason, here we review the different processes by which atmospheric CO2 concentration affects plant transpiration, the several uncertainties related to the complex physiological and radiative processes involved, and the knowledge gaps which need to be filled in order to improve predictions of plant transpiration. Although there is a high degree of certainty that rising CO2 will impact plant transpiration, the exact nature of this impact remains unclear due to complex interactions between CO2 and climate, and key aspects of plant morphology and physiology. The interplay between these factors has substantial consequences not only for future climate and global vegetation, but also for water availability needed for sustaining the productivity of terrestrial ecosystems. Future changes in global plant transpiration in response to enhanced CO2 are expected to be driven by water availability, atmospheric evaporative demand, plant physiological processes, emergent plant disturbances related to increasing temperatures, and the modification of plant physiology and coverage. Considering the universal sensitivity of natural and agricultural systems to terrestrial water availability we argue that reliable future projections of transpiration is an issue of the highest priority, which can only be achieved by integrating monitoring and modeling efforts to improve the representation of CO2 effects on plant transpiration in the next generation of earth system models. © 2022 The Author
    • 

    corecore