
1.  Introduction
Drought is commonly considered as a slow, long-term phenomenon (Wilhite, 2000; Wilhite et al., 2007). However, 
a new term known as “flash drought” (Svoboda et al., 2002) has become popular to distinguish droughts char-
acterized by a rapid development and intensification that trigger a drastic change in humidity conditions in the 
short-term (few weeks), reducing the time available for hazard management and thus increasing the potential 
impacts of water deficits on crops and ecological systems. Recently, numerous flash drought events with heavy 
economic and environmental impacts have been reported in different regions, e.g., United States (He et al., 2019; 
Otkin et  al.,  2016), China (Yuan et  al.,  2015), Australia (Nguyen et  al.,  2019,  2021), southern Africa (Yuan 
et al., 2018), and Russia (Christian et al., 2020). Therefore, flash drought has become a topic of special interest 
to the scientific community (Lisonbee et al., 2021), but little has been done to understand the drivers under a 
changing climate.

Usually, these events are associated to severe precipitation deficits and/or anomalous increases in atmospheric 
evaporative demand (AED), but little is known about the role that each plays in triggering flash drought condi-
tions. Despite the fact that flash drought variability shows a primary response to precipitation deficits (Hoffmann 
et al., 2021; Koster et al., 2019; Noguera et al., 2021; Parker et al., 2021), several studies demonstrated that an 
anomalous increase in AED can be crucial in explaining the rapid development and intensification of some flash 
drought events, causing rapid depletion of soil moisture and more water stress in plants (Anderson et al., 2016; 
McEvoy et al., 2016; Mo & Lettenmaier, 2015; Otkin et al., 2013; Pendergrass et al., 2020). Whereas the role of 
precipitation seems obvious and essential, the role played by AED in triggering or reinforcing drought episodes 
is much more complex, since AED affects drought severity in different ways, including effects on plant transpira-
tion and soil moisture, alterations in plant hydraulics, photosynthesis and carbon uptake (Breshears et al., 2013; 
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Grossiord et al., 2020), and land-atmosphere feedback that may reinforce drought severity (Miralles et al., 2019). 
Likewise, the physical dynamics of the AED that affect drought are strongly influenced by large-scale climate 
drivers such as atmospheric circulation, and also for other important thermodynamics drivers associated with the 
differential warming between oceanic and continental regions (Sherwood & Fu, 2014).

Under global warming conditions, several studies suggest a rise in the frequency and severity of droughts 
(Dai, 2011, 2012; Dai et al., 2018; Zhao et al., 2017) mainly driven by the increase in AED worldwide (Scheff & 
Frierson, 2014; Vicente-Serrano et al., 2020; Wang et al., 2012), which results in a major impact on the ecology 
and agriculture (Allen et al., 2010, 2015; Asseng et al., 2014; Lobell et al., 2011; McDowell, 2011). Related 
to this process, some studies reported an increase in flash drought frequency in regions such as China (Wang 
& Yuan, 2018; Wang et al., 2016; Yuan et al., 2019), southern Africa (Yuan et al., 2018), Brazil and the Sahel 
(Christian et al., 2021) in response to a rise in temperature. In contrast, others studies have suggested mixed trends 
in flash drought frequency in Spain (Noguera et al., 2020, 2021) or even decrease in the United States (Mo & 
Lettenmaier, 2015). Given that the contribution of AED to drought exhibits important contrast between regions 
and seasons worldwide (Tomas-Burguera et al., 2020b), it is expected that its influence on flash drought develop-
ment and intensification will also display significant spatial and temporal variability.

In Spain, flash drought is a frequent phenomenon, which is characterized by a great spatial and seasonal varia-
bility as a result of the climatic complexity of the Iberian Peninsula (Noguera et al., 2020). Likewise, the mete-
orological drivers involved in the triggering of flash drought in Spain can be quite diverse, showing important 
variations between seasons and regions with large climatic contrasts (Noguera et  al.,  2021). In this way, the 
particular case of Spain can be useful to picture the role of meteorological drivers underlying the development 
of a wide diversity of flash drought events over different climatic conditions as well as for a better-understood 
of the implications of the general increase of AED in flash droughts. Also, recent increase in vapor pressure 
deficit (VPD) worldwide has important implications in agricultural and environmental drought impacts (Eamus 
et al., 2013; Grossiord et al., 2020; Will et al., 2013), which could also translate to flash droughts. In Spain, some 
studies reported an increase in the severity of drought events (Vicente-Serrano, Lopez-Moreno, et  al.,  2014) 
associated with the rise in AED noted over the last few decades (Tomas-Burguera et al., 2020a). Therefore, in a 
context in which the role of AED on drought severity is increasing, there is a need to unravel the possible effects 
on flash droughts. Here, we evaluate the role of AED in the development and intensification of flash droughts in 
Spain and its recent evolution as a representative example of the possible implications of AED increase in flash 
droughts frequency in a global context.

2.  Data and Methods
2.1.  Climate Data

This study used a high spatial resolution (1.21 km 2) gridded climate data set for mainland Spain and the Balearic 
Islands over the period 1961–2018. This data set comprised weekly data on precipitation, maximum and mini-
mum air temperature, relative humidity, sunshine duration (as a surrogate of solar radiation), and wind speed. 
The gridded data set was created using all daily observational information from the National Spanish Meteoro-
logical Service (AEMET). The climate series were subjected to a thorough quality control and homogenization 
process (Tomás-Burguera et al., 2016). Details of the data set development and validation have been described in 
Vicente-Serrano et al. (2017). We used the FAO-56 Penman-Monteith equation (Allen et al., 1998) to calculate 
the reference evapotranspiration (ETo), which is a spatially and temporally comparable metric for the AED.

2.1.1.  Flash Drought Identification

Flash droughts events were identified using the Standardized Precipitation Evapotranspiration Index (SPEI; 
Vicente-Serrano et al., 2010), which is obtained from the difference between precipitation and AED (i.e., climatic 
water balance). SPEI can be computed at different time scales over long-term records to obtain SPEI values 
comparable in time and space (Beguería et al., 2014). The SPEI is widely used to analyze the response of hydro-
logical (Lorenzo-Lacruz et  al.,  2010; Peña-Gallardo et  al.,  2019b; Vicente-Serrano & López-Moreno,  2005), 
agricultural (Peña-Gallardo et al., 2018b, 2019a; Potop et al., 2012), and environmental systems (Peña-Gallardo 
et al., 2018a; Vicente-Serrano et al., 2013; Vicente-Serrano, Camarero, et al., 2014; Zhang et al., 2017). Like-
wise, SPEI also proved to be a reliable and robust metric to identify and quantify flash drought (Hunt et al., 2014; 
Noguera et al., 2020, 2021).
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Following the methodology proposed by Noguera et al. (2020), we used the SPEI at a short time scale (1 month) 
and high-frequency data (weekly) to identify sharp changes in humidity conditions associated with the onset 
of flash drought events. This method focuses on the rapid development characteristic of flash drought (Otkin, 
Svoboda, et al., 2018; Svoboda et al., 2002), which results in a sudden and severe decline in SPEI. Thus, flash 
drought is defined as: (a) a minimum length of 4 weeks in the development phase; (b) a ΔSPEI equal to or <−2 
z-units; and (c) a final SPEI value equal to or <−1.28 z-units (corresponding to return periods of 10 years). 
Further details of the methodology to identify flash drought events, as well as the spatial and seasonal character-
istics and trends of flash droughts in mainland Spain and the Balearic Islands over the period 1961–2018, can be 
consulted in Noguera et al. (2020).

2.1.2.  Calculation of the Contribution of AED to the Development of Flash Droughts

The relative contribution of a given variable (i.e., precipitation or AED) to SPEI was estimated by calculating the 
“SPEI PRE,” allowing precipitation to vary according to the observed climate evolution, while the AED remained 
at its mean value, which was set at the average AED for each week of the year over the period 1961–2018. This 
method was used in several studies to calculate the contribution of different variables in triggering drought peri-
ods (Cook et al., 2014; Scheff & Frierson, 2014; Williams et al., 2015; Zhao & Dai, 2015).

To determine the relative contribution of precipitation and AED to the development of flash droughts, we judged 
that the difference between zero and SPEI PRE was due to precipitation variability, while the difference between 
SPEI PRE and SPEI was due to AED contribution. These differences were expressed as a percentage, and for 
those weekly data in which SPEI PRE was equal to or less than SPEI, the AED contribution was 0%. Since this 
study focuses on the development of flash droughts, we looked at the weekly data corresponding to the onset 
of each of flash drought events identified as it captures the cumulative anomaly in P-AED over the last 4 weeks 
(i.e., during the development phase). Thus, we specifically examined the spatial and temporal patterns of the 
AED contribution to the development of flash droughts at seasonal scale (winter DJF, spring MAM, summer JJA, 
autumn SON) over the period 1961–2018.

2.2.  Trend Analysis

We examined the magnitude of change in AED contribution to flash drought development at seasonal scale using 
a linear regression analysis between the series of time (independent variable) and the series of AED contribution 
(dependent variable). To assess the significance of the trend, we employed the nonparametric Mann-Kendall 
statistic. Autocorrelation was included in the trend analysis using the modified Mann-Kendall trend test, which 
returned corrected p-values after accounting for temporal pseudoreplication (Hamed & Ramachandra Rao, 1998; 
Yue & Wang, 2004).

3.  Results and Discussion
In last few decades, numerous flash drought events linked to different drivers were reported in Spain (Figure 1). 
For example, the flash drought of February 1962 is associated with severe precipitation deficits affecting most of 
Spain. The effect of AED during this episode was very low (Figure 1a), and the substantial precipitation deficit 
from late January was the cause of the flash drought conditions in large areas of Spain, with the exception of some 
regions of the north (Figures 1b and 1c). In the spring of 1992, a new flash drought event was reported as a result 
of strong precipitation deficits recorded in April over wide areas of western Spain. The contribution of AED had 
a slight effect, reaching average values around 8% (Figures 1a and 1c), so the lack of precipitation was the key 
driver triggering this flash drought event. We also identified flash droughts in which the role of the AED is very 
relevant or even dominant (Figure 1a). In 2012, the anomalous increase in AED during May and June together 
with a lack of precipitation (AEMET, 2012a, 2012b) triggered a severe flash drought characterized by spreading 
extensively. Initially, a flash drought started in the northeastern regions due to a strong precipitation deficit in late 
spring, and then spread rapidly across most of Spain driven by the increase in AED (Figures 1b and 1c), which 
resulted in large contrasts between the observed AED contribution values (Figure 1a). A more illustrative exam-
ple of how AED can play a dominant role is the flash drought of summer 2015. This event was the result of a rapid 
and anomalous increase in AED associated with an extreme heat wave affecting most of Spain, causing a flash 
drought conditions in large northern, eastern, and southern regions (Figures 1b and 1c). Thus, even though some 
areas of Spain recorded some rainfall in June (AEMET, 2015b), and precipitation remained at normal levels in 
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July (AEMET, 2015a), flash drought conditions emerged strongly driven by increases in AED, which was around 
90% responsible for the onset of the flash drought (Figure 1a). These examples clearly illustrate the great varia-
bility found in the contribution of precipitation deficits and AED to the rapid development and intensification of 
flash drought events in Spain.

However, the average contribution of AED to the development and intensification of flash droughts in Spain 
is generally small and characterized by strong seasonal variability (Figure 2a). The contribution of AED in the 
development of flash droughts during winter is slight, normally <5%, so flash droughts in this season are basi-
cally caused by severe precipitation deficits for short periods. The contribution of AED increases in spring, but 

Figure 1.  (a) Atmospheric evaporative demand (AED) contribution to flash drought events of 1962, 1992, 2012, and 2015, and (b) spatiotemporal evolution of SPEI 
at a 1-month time scale during these episodes, overlay areas represent the spatial extent of the flash drought; (c) examples of temporal evolution of Standardized 
Precipitation Evapotranspiration Index (SPEI) and SPEI PRE values at a random point in which flash drought conditions was identified. The white dot with black halo 
on the map shows the location of the example points shown on the graph.
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precipitation still shows a clear dominant role in the development of flash droughts. In summer, precipitation 
deficits are still the main driver of flash droughts in the region, although the maximum contribution of AED is 
reached during this season, with an average value >20%, but in some regions, it exceeds 40%. Lack of rainfall 
is normal over most of Spain in summer (Martin-Vide & Olcina-Cantos, 2001), so the anomalous increase in 
AED associated with extreme heat waves may be a determinant in triggering a flash drought. In autumn, with 
the decline of the AED, precipitation deficits again have a dominant role in the development of flash droughts.

In addition to these seasonal differences, the contribution of AED to flash drought development also exhibits 
geographic differences (Figure 2b). There is a clear contrast in the average AED contribution reported in the 
humid northern regions and the drier regions such as the Mediterranean coast, northeast or southern Spain. The 
average contribution of AED to flash drought development is close to 0% in most of Spain during winter, with 
the exception of some areas of the Mediterranean coast and northeast Spain. Similarly, in spring, the highest AED 
contribution is recorded in the Mediterranean coast, northeast Spain and also in the Balearic Islands. AED makes 
the highest contribution to flash droughts only in summer, with average values of over 30% in large areas of 
northeast, central, and southern Spain and the Balearic Islands. In autumn, the influence of AED is low, although 
in some areas of southern Spain it still may contribute heavily to the development of flash droughts.

The spatiotemporal patterns of AED contribution to drought development show a close spatial relationship with 
seasonal average precipitation (Figure S1 in Supporting Information S1). Thus, the contribution of AED to flash 
droughts is generally limited to the Mediterranean coast and southern Spain during the warm season, when 
precipitation is close to zero, while it is very low in humid regions of the north and also in cold periods. The 
seasonal and spatial patterns in the role of AED in triggering flash droughts are consistent with previous stud-
ies suggesting that AED is mostly relevant in periods of low precipitation and in dry areas (Tomas-Burguera 
et al., 2020b; Vicente-Serrano et al., 2020). Nevertheless, under the current climate change scenario characterized 
by an increase in AED (Scheff & Frierson, 2014; Wang et al., 2012), it is reasonable to consider that its influence 
may increase (Vicente-Serrano et al., 2020).

Figure 2.  Seasonal (a) density of the average atmospheric evaporative demand (AED) contribution to the development of flash droughts and (b) its spatial distribution 
in mainland Spain and the Balearic Islands over the period 1961–2018.
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AED has increased in Spain over the last few decades (Tomas-Burguera et al., 2020a; Vicente-Serrano, Lopez-
Moreno, et al., 2014) and we found that this evolution has also caused an increase in its contribution to the devel-
opment and intensification of flash droughts (Figure 3a). All seasons, except winter, show a noticeable increase 
in the contribution of AED to flash droughts. This increase is especially remarkable in summer (∼3.5% per 
decade), but only spring and autumn report a statistically significant trend. The trends also exhibit large spatial 
differences (Figure 3b). In winter, there are no relevant changes in the contribution of AED to flash droughts and 
only some areas of Mediterranean coast showed a statistically significant increase. The contribution of the AED 
to flash drought development in spring reported significant trends in some areas of Mediterranean coast, north-
eastern and northwestern Spain, where it has increased by ∼4% per decade. The most important changes in AED 
contribution are noted in summer, with significant increases across Mediterranean coast, central and southern 
Spain with magnitudes of change per decade exceeding 10%. Meanwhile autumn reported significant increases 
in AED contribution in some areas of northwestern Spain, reaching magnitudes of change per decade around 4%.

In addition to the overall rise in the average AED contribution, there was an increase in the percent contribution 
of AED among the total amount of flash drought events (Figure 4). Thus, the percentage of flash droughts in 
which the AED contribution is high has risen in most cases, while the percentage of flash droughts in which it 
is irrelevant (i.e., 0%) exhibit a significant decrease in spring, summer, and autumn over the period 1961–2018 
(Table S1 in Supporting Information S1). The increase in the percentage of events in which the AED is relevant 
to the development of flash drought conditions is particularly remarkable in summer, but it is also evident in 
spring and autumn.

The trends observed in the contribution of AED to flash drought are basically responding to the observed increase 
in AED (Tomas-Burguera et al., 2020a), but lower precipitation during summer (Domínguez-Castro et al., 2019) 
could also play a role since, in dry areas, a further decrease in precipitation would reactivate the sensitivity of 
the SPEI to variations in AED (Tomas-Burguera et al., 2020b). Previous research also evidenced that temper-
ature plays a major role in explaining the recent increases in AED in Spain (Tomas-Burguera et  al.,  2020b; 

Figure 3.  (a) Temporal evolution and (b) spatial distribution of seasonal magnitude of change (per decade) and significance in atmospheric evaporative demand (AED) 
contribution to flash droughts in mainland Spain and the Balearic Islands over the period 1961–2018. The dotted areas correspond to significant trends, while the gray 
areas correspond to pixels in which less than 10 events were recorded.
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Vicente-Serrano, Camarero, et al., 2014), so this means that temperature has been the main variable that would 
also control the higher influence of AED on flash droughts. The increase in AED contribution to flash drought 
development is especially striking in the last two decades, in which the average in summer and spring almost 
doubled compared to the previous four decades (spring: from 5.5 to 9.9%; summer: from 16.7 to 31.3%; Figure S2 
in Supporting Information S1). These findings are coherent with the expected response of water-limited regions 

Figure 4.  Temporal evolution of the seasonal percentage of flash droughts taking into account different atmospheric evaporative demand (AED) contribution 
thresholds in mainland Spain and the Balearic Islands over the period 1961–2018.
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to more severe droughts associated with the increase in AED. Recent studies based on the Palmer Drought Sever-
ity Index (PDSI) show that the severity of drought in some water-limited regions of the world, such as the west 
and southwest of the United States, has responded mainly to the increase in temperature over the last few years 
(Ault et al., 2016; Williams et al., 2015, 2020), which would emphasize the importance of AED in triggering 
recent drought events that could also affect the occurrence of flash droughts. For example, Christian et al. (2021) 
suggested a significant increase in flash droughts in some regions, such as the Iberian Peninsula, Brazil, and the 
Sahel, associated with global warming. Other studies also reported an increase in flash drought frequency in 
China (Wang & Yuan, 2018; Wang et al., 2016; Yuan et al., 2019) and southern Africa (Yuan et al., 2018) linked 
to this process.

The increase in AED would explain the higher frequency and severity of agricultural and ecological droughts 
during the last few decades (IPCC AR6 WGI, 2021) and this could extend to flash drought events that impacted 
severely on agriculture (Christian et al., 2020; He et al., 2019; Hunt et al., 2021; Jin et al., 2019; Otkin, Haigh, 
et  al.,  2018,  2019) and which are associated with anomalous increases in AED, soil moisture depletion and 
plant stress (Hunt et al., 2014). Therefore, the role of AED linked to global warming could be seen as the main 
driver in explaining the suggested recent increase of flash droughts in some regions of the world, as well as their 
possible rise in future scenarios characterized by higher AED. Several recent studies have suggested an escala-
tion in droughts in future climate change scenarios linked to enhanced AED (Cook et al., 2014; Dai et al., 2018; 
Vicente-Serrano et al., 2020). As flash droughts are mostly relevant during the warm season, and associated with 
agricultural and ecological disasters (e.g., tree mortality, crop failure, increased risk of forest fires), it is reason-
able to consider that future climate scenarios may be affected by more frequent and severe flash droughts, which 
would increase these consequences for vegetation activity and growth (Jin et al., 2019; Otkin et al., 2016, 2019; 
Zhang & Yuan, 2020). Thus, although there are some studies suggesting that drought metrics that include AED 
might overestimate future drought severity in comparison with metrics based on evapotranspiration (ET; Berg & 
Sheffield, 2018; Scheff, 2018), in fact the role of AED in the development of flash droughts is mainly restricted 
to water-limited areas and dry periods (e.g., Figure 2); therefore, under these conditions ET is limited by water 
availability. Nevertheless, if there is low soil moisture, although an increase in AED would not result in a notable 
increase in ET, it undoubtedly would enhance vegetation stress (Breshears et al., 2013; Grossiord et al., 2020) 
and, consequently, the severity of agricultural and environmental droughts (Allen et  al.,  2010,  2015; Asseng 
et al., 2014; Lobell et al., 2011; McDowell, 2011). Thus, during periods of no air advection typical of the warm 
season in Spain (García-Herrera & Barriopedro, 2018; Garrido-Perez et  al., 2021), AED increases driven by 
surface-atmosphere coupling, which results in a progressive decrease in ET over this transition from energy-lim-
ited to water-limited conditions (Pendergrass et al., 2020). Moreover, plant physiology may also play a certain 
role given VPD influence on leaf stomata resistance and plant transpiration (Grossiord et al., 2020). Under condi-
tions of air advection, it is expected that atmospheric dynamic is the main driver of AED changes and its possible 
role on flash droughts.

In Spain, the influence of AED is essential in explaining recent flash drought trends, especially during the summer, 
when a significant increase in the number of flash drought events was reported (Noguera et al., 2020, 2021). In 
any case, we must also stress that precipitation deficits are still the most important driver for flash drought devel-
opment. Thus, the occurrence of flash droughts from early autumn to early spring responds almost exclusively 
to variations in precipitation in most of Spain over the period 1961–2018 and there are no noticeable trends in 
the magnitude and surface area affected by flash droughts associated with enhanced AED in the cold season. 
However, AED contribution to flash drought development and to the observed trends is highly important in the 
warm season, especially in water-limited regions where extreme temperature episodes, such as heat waves (Furió 
& Meneu, 2011; Kenawy et al., 2011) and water stress conditions are frequent. Therefore, a stronger influence 
by AED has noticeable ecological and agricultural implications, so it could result in increased drought impacts 
caused by such events, especially in the current observed trends projected for future climate scenarios.

4.  Conclusions
This study provides a comprehensive assessment of the relative contribution of the AED and precipitation deficits 
on the development and intensification of flash drought in Spain over the last six decades, both of which exhibit 
an influence with important spatial contrasts and seasonal differences. In water-limited regions, the increase in 
AED is very important in triggering and intensifying flash droughts in the warm season, and contribute around 
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40% of flash drought development. In humid regions, flash drought responds almost exclusively to precipitation 
deficits in the short-term, with little influence of AED.

Trends suggest a general rise in the contribution of AED to flash droughts over the period 1961–2018, mainly 
associated with the increase in AED. The increase in AED contribution is especially notable in warm season 
over the last two decades. This means that recent trends reported in flash drought occurrence in Spain (Noguera 
et al., 2020, 2021) cannot be explained without the effect from the higher AED recorded in the warm season. 
These recent changes are particularly remarkable in dry regions of southern Spain where AED contribution has 
increased over 10% per decade in summer, but also in other regions, such as the Mediterranean coast during 
spring and northwestern Spain in autumn, with average increases of around 4% per decade.

The findings of this study have important implications for the early warning, decision-making, preparedness, and 
mitigation of flash drought in Spain. Likewise, this research can be useful to unravel flash droughts dynamics 
across a wide range of climatic conditions, but especially in water-limited regions in which the effect of AED 
increase worldwide could result in major ecological and agricultural impacts associated with flash droughts. In 
this way, under the projected increase in water stress linked to global warming, it also expected that the relevance 
of AED in driving the severity of flash droughts will increase in Spain as well as in other water-limited regions 
worldwide.

Data Availability Statement
The data used in this study can be obtained in the Climatology and Climate Services Laboratory (https://lcsc.csic.
es/); both the SPEI data set (https://monitordesequia.csic.es/historico/) and the code for its calculation (https://
lcsc.csic.es/software-2/) are openly available. Additional technical information about SPEI data set development 
and calculation can be found in Vicente-Serrano et al.  (2017). Likewise, at the time of publication, the SPEI 
data set and also the meteorological data required for its calculation can obtain through this URL: https://doi.
org/10.5281/zenodo.5849767.
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