3,500 research outputs found
Feshbach-type resonances for two-particle scattering in graphene
Two-particle scattering in graphene is a multichannel problem, where the
energies of the identical or opposite-helicity channels lie in disjoint energy
segments. Due to the absence of Galilean invariance, these segments depend on
the total momentum . The dispersion relations for the two opposite-helicity
scattering channels are analogous to those of two one-dimensional tight-binding
lattices with opposite dispersion relations, which are known to easily bind
states at their edges. When an -wave separable interaction potential is
assumed, those bound states reveal themselves as three Feshbach resonances in
the identical-helicity channel. In the limit , one of the
resonances survives and the opposite-helicity scattering amplitudes vanish.Comment: 8 pages, 2 figure
Transverse depinning and melting of a moving vortex lattice in driven periodic Josephson junction arrays
We study the effect of thermal fluctuations in a vortex lattice driven in the
periodic pinning of a Josephson junction array. The phase diagram current ()
vs. temperature () is studied. Above the critical current we find a
moving vortex lattice (MVL) with anisotropic Bragg peaks. For large currents
, there is a melting transition of the MVL at . When
applying a small transverse current to the MVL, there is no dissipation at low
. We find an onset of transverse vortex motion at a transverse depinning
temperature .Comment: 4 pages, 4 figures, Figure 2 changed, added new reference
Nonequilibrium corrections in the pressure tensor due to an energy flux
The physical interpretation of the nonequilibrium corrections in the pressure
tensor for radiation submitted to an energy flux obtained in some previous
works is revisited. Such pressure tensor is shown to describe a moving
equilibrium system but not a real nonequilibrium situation.Comment: 4 pages, REVTeX, Brief Report to appear in PRE Dec 9
Fluorescence decay in aperiodic Frenkel lattices
We study motion and capture of excitons in self-similar linear systems in
which interstitial traps are arranged according to an aperiodic sequence,
focusing our attention on Fibonacci and Thue-Morse systems as canonical
examples. The decay of the fluorescence intensity following a broadband pulse
excitation is evaluated by solving the microscopic equations of motion of the
Frenkel exciton problem. We find that the average decay is exponential and
depends only on the concentration of traps and the trapping rate. In addition,
we observe small-amplitude oscillations coming from the coupling between the
low-lying mode and a few high-lying modes through the topology of the lattice.
These oscillations are characteristic of each particular arrangement of traps
and they are directly related to the Fourier transform of the underlying
lattice. Our predictions can be then used to determine experimentally the
ordering of traps.Comment: REVTeX 3.0 + 3PostScript Figures + epsf.sty (uuencoded). To appear in
Physical Review
On the entropy of a stealth vector-tensor black hole
We apply Wald's formalism to a Lagrangian within generalised Proca gravity
that admits a Schwarzschild black hole with a non-trivial vector field. The
resulting entropy differs from that of the same black hole in General
Relativity by a logarithmic correction modulated by the only independent charge
of the vector field. We find conditions on this charge to guarantee that the
entropy is a non-decreasing function of the black hole area, as is the case in
GR. If this requirement is extended to black hole mergers, we find that for
Planck scale black holes, a non-decreasing entropy is possible only if the area
of the final black hole is several times larger than the initial total area of
the merger. Finally, we discuss some implications of the vector Galileon
entropy from the point of view of entropic gravity
Angular size test on the expansion of the Universe
Assuming the standard cosmological model as correct, the average linear size
of galaxies with the same luminosity is six times smaller at z=3.2 than at z=0,
and their average angular size for a given luminosity is approximately
proportional to 1/z. Neither the hypothesis that galaxies which formed earlier
have much higher densities nor their luminosity evolution, mergers ratio, or
massive outflows due to a quasar feedback mechanism are enough to justify such
a strong size evolution. Also, at high redshift, the intrinsic ultraviolet
surface brightness would be prohibitively high with this evolution, and the
velocity dispersion much higher than observed. We explore here another
possibility to overcome this problem by considering different cosmological
scenarios that might make the observed angular sizes compatible with a weaker
evolution.
One of the models explored, a very simple phenomenological extrapolation of
the linear Hubble law in a Euclidean static universe, fits the angular size vs.
redshift dependence quite well, which is also approximately proportional to 1/z
with this cosmological model. There are no free parameters derived ad hoc,
although the error bars allow a slight size/luminosity evolution. The type Ia
supernovae Hubble diagram can also be explained in terms of this model with no
ad hoc fitted parameter.
WARNING: I do not argue here that the true Universe is static. My intention
is just to discuss which theoretical models provide a better fit to the data of
observational cosmology.Comment: 44 pages, accepted to be published in Int. J. Mod. Phys.
- …