821 research outputs found

    Polynomial kernels for 3-leaf power graph modification problems

    Full text link
    A graph G=(V,E) is a 3-leaf power iff there exists a tree T whose leaves are V and such that (u,v) is an edge iff u and v are at distance at most 3 in T. The 3-leaf power graph edge modification problems, i.e. edition (also known as the closest 3-leaf power), completion and edge-deletion, are FTP when parameterized by the size of the edge set modification. However polynomial kernel was known for none of these three problems. For each of them, we provide cubic kernels that can be computed in linear time for each of these problems. We thereby answer an open problem first mentioned by Dom, Guo, Huffner and Niedermeier (2005).Comment: Submitte

    A structural approach to kernels for ILPs: Treewidth and Total Unimodularity

    Get PDF
    Kernelization is a theoretical formalization of efficient preprocessing for NP-hard problems. Empirically, preprocessing is highly successful in practice, for example in state-of-the-art ILP-solvers like CPLEX. Motivated by this, previous work studied the existence of kernelizations for ILP related problems, e.g., for testing feasibility of Ax <= b. In contrast to the observed success of CPLEX, however, the results were largely negative. Intuitively, practical instances have far more useful structure than the worst-case instances used to prove these lower bounds. In the present paper, we study the effect that subsystems with (Gaifman graph of) bounded treewidth or totally unimodularity have on the kernelizability of the ILP feasibility problem. We show that, on the positive side, if these subsystems have a small number of variables on which they interact with the remaining instance, then we can efficiently replace them by smaller subsystems of size polynomial in the domain without changing feasibility. Thus, if large parts of an instance consist of such subsystems, then this yields a substantial size reduction. We complement this by proving that relaxations to the considered structures, e.g., larger boundaries of the subsystems, allow worst-case lower bounds against kernelization. Thus, these relaxed structures can be used to build instance families that cannot be efficiently reduced, by any approach.Comment: Extended abstract in the Proceedings of the 23rd European Symposium on Algorithms (ESA 2015

    Parameterized Algorithms for Modular-Width

    Full text link
    It is known that a number of natural graph problems which are FPT parameterized by treewidth become W-hard when parameterized by clique-width. It is therefore desirable to find a different structural graph parameter which is as general as possible, covers dense graphs but does not incur such a heavy algorithmic penalty. The main contribution of this paper is to consider a parameter called modular-width, defined using the well-known notion of modular decompositions. Using a combination of ILPs and dynamic programming we manage to design FPT algorithms for Coloring and Partitioning into paths (and hence Hamiltonian path and Hamiltonian cycle), which are W-hard for both clique-width and its recently introduced restriction, shrub-depth. We thus argue that modular-width occupies a sweet spot as a graph parameter, generalizing several simpler notions on dense graphs but still evading the "price of generality" paid by clique-width.Comment: to appear in IPEC 2013. arXiv admin note: text overlap with arXiv:1304.5479 by other author

    Reliability of diaphragmatic mobility assessment using a real time ultrasound among non-specific low back pain

    Get PDF
    Background and Objective: Ultrasound measurement of Diaphragmatic Mobility (DM) has been shown to be a reliable measurement tool among healthy subjects. However, the measures of reliability are needed prior to clinical use of this device among Non-Specific Low Back Pain (NS-LBP). Therefore, the aim of the study was to investigate the relative and absolute reliability of DM using Real Time Ultrasound (RTUS) among subjects with NS-LBP. Materials and Methods: Nine subjects with NS-LBP (23.33 ± 1.58) years old were recruited. A qualified examiner performed measurement of DM using RTUS by placing transducer on the right subcostal region in semi-fowler’s position with 30 degree elevation of the trunk. The test-retest measures were re-assessed with 24 hour interval between sessions. Results: There was no systematic errors between the test-retest measures (p>0.05). Intra rater reliability showed ICC value of 0.92, which indicates an excellent reliability. The SEMs of the measurement was 2.56 mm and the MDC of 7.09mm. Conclusion:The RTUS for assessing DM provides an excellent intra-rater reliability which may be used as an assessment technique for clinical evaluation of DM in adults with NS-LBP. The SEMs and MDC reported may also allow for accurate interpretation of DM assessments in NS-LBP

    The impact of novel coronavirus (2019-nCoV) pandemic movement control order (MCO) on dengue cases in Peninsular Malaysia

    Full text link
    This study has highlighted the trend of recently-reported dengue cases after the implementation of the Movement Control Orders (MCOs) caused due to COVID-19 pandemic in Malaysia. The researchers used the dengue surveillance data published by the Malaysian Ministry of Health during the 3 phases of MCO (which ranged between 17th March 2020 and 28th April 2020) was used for determining the cumulative number of dengue patients. Thereafter, the dengue cases were mapped using the Geographical Information System (GIS). The results indicated that during the 42 days of MCO in Peninsular Malaysia, 11,242 total cases of dengue were reported. The daily trend of the dengue cases showed a decrease from 7268 cases that occurred before the MCOs to 4662 dengue cases that occurred during the initial 14 days of the COVID-19 pandemic (i.e., MCO I), to 3075 cases occurring during the MCO II and 3505 dengue cases noted during MCO III. The central peninsular region showed a maximal decrease in new dengue cases (52.62%), followed by the northern peninsular region (1.89%); eastern coastal region (1.25%) and the southern peninsular region (1.14%) during the initial MCO implementation. However, an increase in the new dengue cases was noted during the MCO III period, wherein all states showed an increase in the new dengue cases as compared during MCO II. The decrease in the pattern was not solely based on the MCO, hence, further investigation is necessary after considering different influencing factors. These results have important implication for future large-scale risk assessment, planning and hazard mitigation on dengue management

    Design Simulation of Multiple Differential Transceiver at 2.0 GHz for Third Generation Mobile Communication System

    Get PDF
    Third generation mobile communication system is widely used nowadays. One of its parameter standard, which is QPSK modulation has been adopted by International Telecommunication Union (ITU) to be used in IMT-2000. However, due to amplitude variations introduced in QPSK, a rather robust and reliable data modulation technique, namely the 7c/4-shift Differential QPSK is proposed. For detection purposes, two types of detectors are evaluated for their performance in AWGN and Rayleigh fading channels. A differential detection technique called multiple differential detection technique which uses maximum-likelihood sequence estimation (MLSE) of the transmitted phases is compared with conventional differential detection which uses symbol-bysymbol detection. By using some of the IMT-2000 standard parameters, the simulation results show that multiple differential detection scheme performs much better than conventional differential detection scheme

    Hitting forbidden subgraphs in graphs of bounded treewidth

    Get PDF
    We study the complexity of a generic hitting problem H-Subgraph Hitting, where given a fixed pattern graph HH and an input graph GG, the task is to find a set XV(G)X \subseteq V(G) of minimum size that hits all subgraphs of GG isomorphic to HH. In the colorful variant of the problem, each vertex of GG is precolored with some color from V(H)V(H) and we require to hit only HH-subgraphs with matching colors. Standard techniques shows that for every fixed HH, the problem is fixed-parameter tractable parameterized by the treewidth of GG; however, it is not clear how exactly the running time should depend on treewidth. For the colorful variant, we demonstrate matching upper and lower bounds showing that the dependence of the running time on treewidth of GG is tightly governed by μ(H)\mu(H), the maximum size of a minimal vertex separator in HH. That is, we show for every fixed HH that, on a graph of treewidth tt, the colorful problem can be solved in time 2O(tμ(H))V(G)2^{\mathcal{O}(t^{\mu(H)})}\cdot|V(G)|, but cannot be solved in time 2o(tμ(H))V(G)O(1)2^{o(t^{\mu(H)})}\cdot |V(G)|^{O(1)}, assuming the Exponential Time Hypothesis (ETH). Furthermore, we give some preliminary results showing that, in the absence of colors, the parameterized complexity landscape of H-Subgraph Hitting is much richer.Comment: A full version of a paper presented at MFCS 201

    Parents' points of view: an evaluation of the M'Lop Tapang special needs programme, Cambodia

    Get PDF
    M’Lop Tapang is a registered non-governmental organisation working in South West Cambodia and providing services to 5000 vulnerable children and 2500 families. This evaluation was commissioned to review M’Lop Tapang’s special needs programme. Interviews were conducted with 35 parents / carers of children who receive services from M’Lop Tapang’s special needs programme . Nearly all of these parents / carers reported that they had noticed improvements in their children’s behaviour or functional ability since attending the programme. Significantly, almost all also reported a dramatic reduction in stress as a result of their child attending the programmes. While the study revealed many positive aspects of M'Lop Tapang’s special needs programme it also highlighted areas for improvement, particularly in areas of parental learning and education
    corecore