research

Hitting forbidden subgraphs in graphs of bounded treewidth

Abstract

We study the complexity of a generic hitting problem H-Subgraph Hitting, where given a fixed pattern graph HH and an input graph GG, the task is to find a set XV(G)X \subseteq V(G) of minimum size that hits all subgraphs of GG isomorphic to HH. In the colorful variant of the problem, each vertex of GG is precolored with some color from V(H)V(H) and we require to hit only HH-subgraphs with matching colors. Standard techniques shows that for every fixed HH, the problem is fixed-parameter tractable parameterized by the treewidth of GG; however, it is not clear how exactly the running time should depend on treewidth. For the colorful variant, we demonstrate matching upper and lower bounds showing that the dependence of the running time on treewidth of GG is tightly governed by μ(H)\mu(H), the maximum size of a minimal vertex separator in HH. That is, we show for every fixed HH that, on a graph of treewidth tt, the colorful problem can be solved in time 2O(tμ(H))V(G)2^{\mathcal{O}(t^{\mu(H)})}\cdot|V(G)|, but cannot be solved in time 2o(tμ(H))V(G)O(1)2^{o(t^{\mu(H)})}\cdot |V(G)|^{O(1)}, assuming the Exponential Time Hypothesis (ETH). Furthermore, we give some preliminary results showing that, in the absence of colors, the parameterized complexity landscape of H-Subgraph Hitting is much richer.Comment: A full version of a paper presented at MFCS 201

    Similar works