131 research outputs found

    HuR is exported to the cytoplasm in oral cancer cells in a different manner from that of normal cells

    Get PDF
    HuR, a ubiquitously expressed member of the Hu protein family that binds and stabilizes an AU-rich element (ARE)-containing mRNAs, is known to shuttle between the nucleus and the cytoplasm via several export pathways. When normal cells were treated with heat shock, HuR was exported to the cytoplasm in a chromosome maintenance region 1 (CRM1)-dependent manner. However, in this study, we demonstrate that HuR is exported to the cytoplasm in oral cancer cells even if the cells were treated with the inhibitor of the CRM1-independent export pathway. Immunohistochemical and biochemical analyses showed that HuR existed in both the cytoplasm and the nucleus in oral cancer cells, such as HSC-3 and Ca9.22, but existed entirely inside the nucleus in normal cells. AU-rich element-mRNAs were also exported to the cytoplasm and stabilised in the oral cancer cells, which were inhibited by HuR knockdown. This export of HuR was not affected by at least 7 h of treatment of leptomycin B (LMB), which is an inhibitor of the CRM1-dependent export pathway. These findings suggest that HuR is exported to the cytoplasm in oral carcinoma cells in a different manner from that of normal cells, and is likely to occur through the perturbation of a normal export pathway

    Aldosterone and vasopressin affect α- and γ-ENaC mRNA translation

    Get PDF
    Vasopressin and aldosterone play key roles in the fine adjustment of sodium and water re-absorption in the nephron. The molecular target of this regulation is the epithelial sodium channel (ENaC) consisting of α-, β- and γ-subunits. We investigated mRNA-specific post-transcriptional mechanisms in hormone-dependent expression of ENaC subunits in mouse kidney cortical collecting duct cells. Transcription experiments and polysome gradient analysis demonstrate that both hormones act on transcription and translation. RNA-binding proteins (RBPs) and mRNA sequence motifs involved in translational control of γ-ENaC synthesis were studied. γ-ENaC–mRNA 3′-UTR contains an AU-rich element (ARE), which was shown by RNA affinity chromatography to interact with AU-rich element binding proteins (ARE-BP) like HuR, AUF1 and TTP. Some RBPs co-localized with γ-ENaC mRNA in polysomes in a hormone-dependent manner. Reporter gene co-expression experiments with luciferase γ-ENaC 3′-UTR constructs and ARE-BP expression plasmids demonstrate the importance of RNA–protein interaction for the up-regulation of γ-ENaC synthesis. We document that aldosterone and the V2 receptor agonist dDAVP act on synthesis of α- and γ-ENaC subunits mediated by RBPs as effectors of translation but not by mRNA stabilization. Immunoprecipitation and UV-crosslinking analysis of γ-ENaC–mRNA/HuR complexes document the significance of γ-ENaC–mRNA–3′-UTR/HuR interaction for hormonal control of ENaC synthesis

    5, 8, 11, 14-eicosatetraynoic acid suppresses CCL2/MCP-1 expression in IFN-γ-stimulated astrocytes by increasing MAPK phosphatase-1 mRNA stability

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The peroxisome proliferator-activated receptor (PPAR)-α activator, 5,8,11,14-eicosatetraynoic acid (ETYA), is an arachidonic acid analog. It is reported to inhibit up-regulation of pro-inflammatory genes; however, its underlying mechanism of action is largely unknown. In the present study, we focused on the inhibitory action of ETYA on the expression of the chemokine, CCL2/MCP-1, which plays a key role in the initiation and progression of inflammation.</p> <p>Methods</p> <p>To determine the effect of ETYA, primary cultured rat astrocytes and microglia were stimulated with IFN-γ in the presence of ETYA and then, expression of CCL2/MCP-1 and MAPK phosphatase (MKP-1) were determined using RT-PCR and ELISA. MKP-1 mRNA stability was evaluated by treating actinomycin D. The effect of MKP-1 and human antigen R (HuR) was analyzed by using specific siRNA transfection system. The localization of HuR was analyzed by immunocytochemistry and subcellular fractionation experiment.</p> <p>Results</p> <p>We found that ETYA suppressed CCL2/MCP-1 transcription and secretion of CCL2/MCP-1 protein through up-regulation of MKP-1mRNA levels, resulting in suppression of c-Jun N-terminal kinase (JNK) phosphorylation and activator protein 1 (AP1) activity in IFN-γ-stimulated brain glial cells. Moreover, these effects of ETYA were independent of PPAR-α. Experiments using actinomycin D revealed that the ETYA-induced increase in MKP-1 mRNA levels reflected an increase in transcript stability. Knockdown experiments using small interfering RNA demonstrated that this increase in MKP-1 mRNA stability depended on HuR, an RNA-binding protein known to promote enhanced mRNA stability. Furthermore, ETYA-induced, HuR-mediated mRNA stabilization resulted from HuR-MKP-1 nucleocytoplasmic translocation, which served to protect MKP-1 mRNA from the mRNA degradation machinery.</p> <p>Conclusion</p> <p>ETYA induces MKP-1 through HuR at the post-transcriptional level in a receptor-independent manner. The mechanism revealed here suggests eicosanoids as potential therapeutic modulators of inflammation that act through a novel target.</p

    Long Term Stabilization of Expanding Aortic Aneurysms by a Short Course of Cyclosporine A through Transforming Growth Factor-Beta Induction

    Get PDF
    Abdominal aortic aneurysms (AAAs) expand as a consequence of extracellular matrix destruction, and vascular smooth muscle cell (VSMC) depletion. Transforming growth factor (TGF)-beta 1 overexpression stabilizes expanding AAAs in rat. Cyclosporine A (CsA) promotes tissue accumulation and induces TGF -beta1 and, could thereby exert beneficial effects on AAA remodelling and expansion. In this study, we assessed whether a short administration of CsA could durably stabilize AAAs through TGF-beta induction. We showed that CsA induced TGF-beta1 and decreased MMP-9 expression dose-dependently in fragments of human AAAs in vitro, and in animal models of AAA in vivo. CsA prevented AAA formation at 14 days in the rat elastase (diameter increase: CsA: 131.9±44.2%; vehicle: 225.9±57.0%, P = 0.003) and calcium chloride mouse models (diameters: CsA: 0.72±0.14 mm; vehicle: 1.10±0.11 mm, P = .008), preserved elastic fiber network and VSMC content, and decreased inflammation. A seven day administration of CsA stabilized formed AAAs in rats seven weeks after drug withdrawal (diameter increase: CsA: 14.2±15.1%; vehicle: 45.2±13.7%, P = .017), down-regulated wall inflammation, and increased αSMA-positive cell content. Co-administration of a blocking anti-TGF-beta antibody abrogated CsA impact on inflammation, αSMA-positive cell accumulation and diameter control in expanding AAAs. Our study demonstrates that pharmacological induction of TGF-beta1 by a short course of CsA administration represents a new approach to induce aneurysm stabilization by shifting the degradation/repair balance towards healing

    RNA Binding Protein CUGBP2/CELF2 Mediates Curcumin-Induced Mitotic Catastrophe of Pancreatic Cancer Cells

    Get PDF
    Curcumin inhibits the growth of pancreatic cancer tumor xenografts in nude mice; however, the mechanism of action is not well understood. It is becoming increasingly clear that RNA binding proteins regulate posttranscriptional gene expression and play a critical role in RNA stability and translation. Here, we have determined that curcumin modulates the expression of RNA binding protein CUGBP2 to inhibit pancreatic cancer growth.In this study, we show that curcumin treated tumor xenografts have a significant reduction in tumor volume and angiogenesis. Curcumin inhibited the proliferation, while inducing G2-M arrest and apoptosis resulting in mitotic catastrophe of various pancreatic cancer cells. This was further confirmed by increased phosphorylation of checkpoint kinase 2 (Chk2) protein coupled with higher levels of nuclear cyclin B1 and Cdc-2. Curcumin increased the expression of cyclooxygenase-2 (COX-2) and vascular endothelial growth factor (VEGF) mRNA, but protein levels were lower. Furthermore, curcumin increased the expression of RNA binding proteins CUGBP2/CELF2 and TIA-1. CUGBP2 binding to COX-2 and VEGF mRNA was also enhanced, thereby increasing mRNA stability, the half-life changing from 30 min to 8 h. On the other hand, silencer-mediated knockdown of CUGBP2 partially restored the expression of COX-2 and VEGF even with curcumin treatment. COX-2 and VEGF mRNA levels were reduced to control levels, while proteins levels were higher.Curcumin inhibits pancreatic tumor growth through mitotic catastrophe by increasing the expression of RNA binding protein CUGBP2, thereby inhibiting the translation of COX-2 and VEGF mRNA. These data suggest that translation inhibition is a novel mechanism of action for curcumin during the therapeutic intervention of pancreatic cancers

    Temporally Regulated Traffic of HuR and Its Associated ARE-Containing mRNAs from the Chromatoid Body to Polysomes during Mouse Spermatogenesis

    Get PDF
    International audienceBACKGROUND: In mammals, a temporal disconnection between mRNA transcription and protein synthesis occurs during late steps of germ cell differentiation, in contrast to most somatic tissues where transcription and translation are closely linked. Indeed, during late stages of spermatogenesis, protein synthesis relies on the appropriate storage of translationally inactive mRNAs in transcriptionally silent spermatids. The factors and cellular compartments regulating mRNA storage and the timing of their translation are still poorly understood. The chromatoid body (CB), that shares components with the P. bodies found in somatic cells, has recently been proposed to be a site of mRNA processing. Here, we describe a new component of the CB, the RNA binding protein HuR, known in somatic cells to control the stability/translation of AU-rich containing mRNAs (ARE-mRNAs). METHODOLOGY/PRINCIPAL FINDINGS: Using a combination of cell imagery and sucrose gradient fractionation, we show that HuR localization is highly dynamic during spermatid differentiation. First, in early round spermatids, HuR colocalizes with the Mouse Vasa Homolog, MVH, a marker of the CB. As spermatids differentiate, HuR exits the CB and concomitantly associates with polysomes. Using computational analyses, we identified two testis ARE-containing mRNAs, Brd2 and GCNF that are bound by HuR and MVH. We show that these target ARE-mRNAs follow HuR trafficking, accumulating successively in the CB, where they are translationally silent, and in polysomes during spermatid differentiation. CONCLUSIONS/SIGNIFICANCE: Our results reveal a temporal regulation of HuR trafficking together with its target mRNAs from the CB to polysomes as spermatids differentiate. They strongly suggest that through the transport of ARE-mRNAs from the CB to polysomes, HuR controls the appropriate timing of ARE-mRNA translation. HuR might represent a major post-transcriptional regulator, by promoting mRNA storage and then translation, during male germ cell differentiation

    Post-transcriptional control during chronic inflammation and cancer: a focus on AU-rich elements

    Get PDF
    A considerable number of genes that code for AU-rich mRNAs including cytokines, growth factors, transcriptional factors, and certain receptors are involved in both chronic inflammation and cancer. Overexpression of these genes is affected by aberrations or by prolonged activation of several signaling pathways. AU-rich elements (ARE) are important cis-acting short sequences in the 3′UTR that mediate recognition of an array of RNA-binding proteins and affect mRNA stability and translation. This review addresses the cellular and molecular mechanisms that are common between inflammation and cancer and that also govern ARE-mediated post-transcriptional control. The first part examines the role of the ARE-genes in inflammation and cancer and sequence characteristics of AU-rich elements. The second part addresses the common signaling pathways in inflammation and cancer that regulate the ARE-mediated pathways and how their deregulations affect ARE-gene regulation and disease outcome

    COVIDiSTRESS diverse dataset on psychological and behavioural outcomes one year into the COVID-19 pandemic

    Get PDF
    During the onset of the COVID-19 pandemic, the COVIDiSTRESS Consortium launched an open-access global survey to understand and improve individuals’ experiences related to the crisis. A year later, we extended this line of research by launching a new survey to address the dynamic landscape of the pandemic. This survey was released with the goal of addressing diversity, equity, and inclusion by working with over 150 researchers across the globe who collected data in 48 languages and dialects across 137 countries. The resulting cleaned dataset described here includes 15,740 of over 20,000 responses. The dataset allows cross-cultural study of psychological wellbeing and behaviours a year into the pandemic. It includes measures of stress, resilience, vaccine attitudes, trust in government and scientists, compliance, and information acquisition and misperceptions regarding COVID-19. Open-access raw and cleaned datasets with computed scores are available. Just as our initial COVIDiSTRESS dataset has facilitated government policy decisions regarding health crises, this dataset can be used by researchers and policy makers to inform research, decisions, and policy. © 2022, The Author(s).U.S. Department of Education, ED: P031S190304; Texas A and M International University, TAMIU; National Research University Higher School of Economics, ВШЭThe COVIDiSTRESS Consortium would like to acknowledge the contributions of friends and collaborators in translating and sharing the COVIDiSTRESS survey, as well as the study participants. Data analysis was supported by Texas A&M International University (TAMIU) Research Grant, TAMIU Act on Ideas, and the TAMIU Advancing Research and Curriculum Initiative (TAMIU ARC) awarded by the US Department of Education Developing Hispanic-Serving Institutions Program (Award # P031S190304). Data collection by Dmitrii Dubrov was supported within the framework of the Basic Research Program at HSE University, RF
    corecore