3,491 research outputs found

    A survey of impulsive trajectories Final report

    Get PDF
    Literature survey of astrodynamics problems on intercept, transfer, and rendezvous trajectorie

    Density functional study of the adsorption of K on the Ag(111) surface

    Full text link
    Full-potential gradient corrected density functional calculations of the adsorption of potassium on the Ag(111) surface have been performed. The considered structures are Ag(111) (root 3 x root 3) R30degree-K and Ag(111) (2 x 2)-K. For the lower coverage, fcc, hcp and bridge site; and for the higher coverage all considered sites are practically degenerate. Substrate rumpling is most important for the top adsorption site. The bond length is found to be nearly identical for the two coverages, in agreement with recent experiments. Results from Mulliken populations, bond lengths, core level shifts and work functions consistently indicate a small charge transfer from the potassium atom to the substrate, which is slightly larger for the lower coverage.Comment: to appear in Phys Rev

    Ground state properties of heavy alkali halides

    Full text link
    We extend previous work on alkali halides by calculations for the heavy-atom species RbF, RbCl, LiBr, NaBr, KBr, RbBr, LiI, NaI, KI, and RbI. Relativistic effects are included by means of energy-consistent pseudopotentials, correlations are treated at the coupled-cluster level. A striking deficiency of the Hartree-Fock approach are lattice constants deviating by up to 7.5 % from experimental values which is reduced to a maximum error of 2.4 % by taking into account electron correlation. Besides, we provide ab-initio data for in-crystal polarizabilities and van der Waals coefficients.Comment: accepted by Phys. Rev.

    Allgemeine Erkrankungen

    Get PDF

    Moments of spectral functions: Monte Carlo evaluation and verification

    Full text link
    The subject of the present study is the Monte Carlo path-integral evaluation of the moments of spectral functions. Such moments can be computed by formal differentiation of certain estimating functionals that are infinitely-differentiable against time whenever the potential function is arbitrarily smooth. Here, I demonstrate that the numerical differentiation of the estimating functionals can be more successfully implemented by means of pseudospectral methods (e.g., exact differentiation of a Chebyshev polynomial interpolant), which utilize information from the entire interval (β/2,β/2)(-\beta \hbar / 2, \beta \hbar/2). The algorithmic detail that leads to robust numerical approximations is the fact that the path integral action and not the actual estimating functional are interpolated. Although the resulting approximation to the estimating functional is non-linear, the derivatives can be computed from it in a fast and stable way by contour integration in the complex plane, with the help of the Cauchy integral formula (e.g., by Lyness' method). An interesting aspect of the present development is that Hamburger's conditions for a finite sequence of numbers to be a moment sequence provide the necessary and sufficient criteria for the computed data to be compatible with the existence of an inversion algorithm. Finally, the issue of appearance of the sign problem in the computation of moments, albeit in a milder form than for other quantities, is addressed.Comment: 13 pages, 2 figure

    Influence of the Available Surface Area and Cell Elasticity on Bacterial Adhesion Forces on Highly Ordered Silicon Nanopillars

    Get PDF
    [Image: see text] Initial bacterial adhesion to solid surfaces is influenced by a multitude of different factors, e.g., roughness and stiffness, topography on the micro- and nanolevel, as well as chemical composition and wettability. Understanding the specific influences and possible interactive effects of all of these factors individually could lead to guidance on bacterial adhesion and prevention of unfavorable consequences like medically relevant biofilm formation. On this way, the aim of the present study was to identify the specific influence of the available surface area on the adhesion of clinically relevant bacterial strains with different membrane properties: Gram-positive Staphylococcus aureus and Gram-negative Aggregatibacter actinomycetemcomitans. As model surfaces, silicon nanopillar specimens with different spacings were fabricated using electron beam lithography and cryo-based reactive ion etching techniques. Characterization by scanning electron microscopy and contact angle measurement revealed almost defect-free highly ordered nanotopographies only varying in the available surface area. Bacterial adhesion forces to these specimens were quantified by means of single-cell force spectroscopy exploiting an atomic force microscope connected to a microfluidic setup (FluidFM). The nanotopographical features reduced bacterial adhesion strength by reducing the available surface area. In addition, the strain-specific interaction in detail depended on the bacterial cell’s elasticity and deformability as well. Analyzed by confocal laser scanning microscopy, the obtained results on bacterial adhesion forces could be linked to the subsequent biofilm formation on the different topographies. By combining two cutting-edge technologies, it could be demonstrated that the overall bacterial adhesion strength is influenced by both the simple physical interaction with the underlying nanotopography and its available surface area as well as the deformability of the cell

    Ab-Initio Calculation of the Metal-Insulator Transition in Sodium rings and chains and in mixed Sodium-Lithium systems

    Full text link
    We study how the Mott metal-insulator transition (MIT) is influenced when we deal with electrons with different angular momenta. For lithium we found an essential effect when we include pp-orbitals in the description of the Hilbert space. We apply quantum-chemical methods to sodium rings and chains in order to investigate the analogue of a MIT, and how it is influenced by periodic and open boundaries. By changing the interatomic distance we analyse the character of the many-body wavefunction and the charge gap. In the second part we mimic a behaviour found in the ionic Hubbard model, where a transition from a band to a Mott insulator occurs. For that purpose we perform calculations for mixed sodium-lithium rings. In addition, we examine the question of bond alternation for the pure sodium system and the mixed sodium-lithium system, in order to determine under which conditions a Peierls distortion occurs.Comment: 8 pages, 7 figures, accepted Eur. J. Phys.
    corecore