1,138 research outputs found

    Software development for stochastic cooling study in the time domain

    Get PDF

    On scattering cross sections and durations near an isolated compound-resonance, distorted by the non-resonant background, in the center-of-mass and laboratory systems

    Full text link
    During last 20 years there was revealed and published the phenomenon of the appearing of the time advance instead of the time delay at the region of a compound-nucleus resonance, distorted by the non-resonant background (in the center-of-mass (C-) system). This phenomenon is usually accompanied by a minimum in the cross section near the same energy. Here we analyze the cross section and the time delay of the nucleon-nucleus scattering in the laboratory (L-) system. In the L-system the delay-advance phenomenon does not appear. We use and concretize the non-standard analytical transformations of the cross section from the C-system to the L-system, obtained in our previous papers. They are illustrated by the calculations of energy dependences of cross sections in the L-system for several cases of nucleon elastic scattering by nuclei 12C, 16O, 28Si, 52Cr, 56Fe and 64Ni at the range of distorted resonances in comparison with the experimental data.Comment: 11 pages, 7 figure

    Optical squeezing in temporal, polarization, and spatial domains

    Get PDF
    We present methods of transforming the standard quadrature amplitude squeezing of a continuous-wave light beam to its Stokes parameters and transverse spatial modes statistics. These two states of light are called polarization squeezing and spatial squeezing, respectively. We present experimental results of the quadrature amplitude, polarization and spatial squeezing obtained with a common experimental setup based on optical parametric amplifiers. The transformations from quadrature amplitude to polarization and spatial squeezing are achieved with only simple linear optics

    Measurement of the cross-section ratio sigma_{psi(2S)}/sigma_{J/psi(1S)} in deep inelastic exclusive ep scattering at HERA

    Get PDF
    The exclusive deep inelastic electroproduction of ψ(2S)\psi(2S) and J/ψ(1S)J/\psi(1S) at an epep centre-of-mass energy of 317 GeV has been studied with the ZEUS detector at HERA in the kinematic range 2<Q2<802 < Q^2 < 80 GeV2^2, 30<W<21030 < W < 210 GeV and t<1|t| < 1 GeV2^2, where Q2Q^2 is the photon virtuality, WW is the photon-proton centre-of-mass energy and tt is the squared four-momentum transfer at the proton vertex. The data for 2<Q2<52 < Q^2 < 5 GeV2^2 were taken in the HERA I running period and correspond to an integrated luminosity of 114 pb1^{-1}. The data for 5<Q2<805 < Q^2 < 80 GeV2^2 are from both HERA I and HERA II periods and correspond to an integrated luminosity of 468 pb1^{-1}. The decay modes analysed were μ+μ\mu^+\mu^- and J/ψ(1S)π+πJ/\psi(1S) \,\pi^+\pi^- for the ψ(2S)\psi(2S) and μ+μ\mu^+\mu^- for the J/ψ(1S)J/\psi(1S). The cross-section ratio σψ(2S)/σJ/ψ(1S)\sigma_{\psi(2S)}/\sigma_{J/\psi(1S)} has been measured as a function of Q2,WQ^2, W and tt. The results are compared to predictions of QCD-inspired models of exclusive vector-meson production.Comment: 24 pages, 8 figure

    Measurement of neutral current e+/-p cross sections at high Bjorken x with the ZEUS detector

    Get PDF
    The neutral current e+/-p cross section has been measured up to values of Bjorken x of approximately 1 with the ZEUS detector at HERA using an integrated luminosity of 187 inv. pb of e-p and 142 inv. pb of e+p collisions at sqrt(s) = 318GeV. Differential cross sections in x and Q2, the exchanged boson virtuality, are presented for Q2 geq 725GeV2. An improved reconstruction method and greatly increased amount of data allows a finer binning in the high-x region of the neutral current cross section and leads to a measurement with much improved precision compared to a similar earlier analysis. The measurements are compared to Standard Model expectations based on a variety of recent parton distribution functions.Comment: 39 pages, 9 figure
    corecore