154 research outputs found

    Mortality in Hepatitis C Virus–Infected Patients With a Diagnosis of AIDS in the Era of Combination Antiretroviral Therapy

    Get PDF
    Chronic hepatitis C increased mortality by approximately 50% in patients with Centers for Disease Control and Prevention–defined AIDS, despite the competing mortality risks in these patients. About 20% of the deaths were liver-related, suggesting that greater hepatitis C virus awareness and treatment could increase survival

    Hepatitis C Virus Core Protein Induces Neuroimmune Activation and Potentiates Human Immunodeficiency Virus-1 Neurotoxicity

    Get PDF
    BACKGROUND: Hepatitis C virus (HCV) genomes and proteins are present in human brain tissues although the impact of HIV/HCV co-infection on neuropathogenesis remains unclear. Herein, we investigate HCV infectivity and effects on neuronal survival and neuroinflammation in conjunction with HIV infection. METHODOLOGY: Human microglia, astrocyte and neuron cultures were infected with cell culture-derived HCV or exposed to HCV core protein with or without HIV-1 infection or HIV-1 Viral Protein R (Vpr) exposure. Host immune gene expression and cell viability were measured. Patch-clamp studies of human neurons were performed in the presence or absence of HCV core protein. Neurobehavioral performance and neuropathology were examined in HIV-1 Vpr-transgenic mice in which stereotaxic intrastriatal implants of HCV core protein were performed. PRINCIPAL FINDINGS: HCV-encoded RNA as well as HCV core and non-structural 3 (NS3) proteins were detectable in human microglia and astrocytes infected with HCV. HCV core protein exposure induced expression of pro-inflammatory cytokines including interleukin-1Ξ², interleukin-6 and tumor necrosis factor-Ξ± in microglia (p<0.05) but not in astrocytes while increased chemokine (e.g. CXCL10 and interleukin-8) expression was observed in both microglia and astrocytes (p<0.05). HCV core protein modulated neuronal membrane currents and reduced both Ξ²-III-tubulin and lipidated LC3-II expression (p<0.05). Neurons exposed to supernatants from HCV core-activated microglia exhibited reduced Ξ²-III-tubulin expression (p<0.05). HCV core protein neurotoxicity and interleukin-6 induction were potentiated by HIV-1 Vpr protein (p<0.05). HIV-1 Vpr transgenic mice implanted with HCV core protein showed gliosis, reduced neuronal counts together with diminished LC3 immunoreactivity. HCV core-implanted animals displayed neurobehavioral deficits at days 7 and 14 post-implantation (p<0.05). CONCLUSIONS: HCV core protein exposure caused neuronal injury through suppression of neuronal autophagy in addition to neuroimmune activation. The additive neurotoxic effects of HCV- and HIV-encoded proteins highlight extrahepatic mechanisms by which HCV infection worsens the disease course of HIV infection

    Plasma MicroRNA Profiles in Rat Models of Hepatocellular Injury, Cholestasis, and Steatosis

    Get PDF
    MicroRNAs (miRNAs) are small RNA molecules that function to modulate the expression of target genes, playing important roles in a wide range of physiological and pathological processes. The miRNAs in body fluids have received considerable attention as potential biomarkers of various diseases. In this study, we compared the changes of the plasma miRNA expressions by acute liver injury (hepatocellular injury or cholestasis) and chronic liver injury (steatosis, steatohepatitis and fibrosis) using rat models made by the administration of chemicals or special diets. Using miRNA array analysis, we found that the levels of a large number of miRNAs (121–317 miRNAs) were increased over 2-fold and the levels of a small number of miRNAs (6–35 miRNAs) were decreased below 0.5-fold in all models except in a model of cholestasis caused by bile duct ligation. Interestingly, the expression profiles were different between the models, and the hierarchical clustering analysis discriminated between the acute and chronic liver injuries. In addition, miRNAs whose expressions were typically changed in each type of liver injury could be specified. It is notable that, in acute liver injury models, the plasma level of miR-122, the most abundant miRNA in the liver, was more quickly and dramatically increased than the plasma aminotransferase level, reflecting the extent of hepatocellular injury. This study demonstrated that the plasma miRNA profiles could reflect the types of liver injury (e.g. acute/chronic liver injury or hepatocellular injury/cholestasis/steatosis/steatohepatitis/fibrosis) and identified the miRNAs that could be specific and sensitive biomarkers of liver injury

    Investigation of the Role of TNF-Ξ± Converting Enzyme (TACE) in the Inhibition of Cell Surface and Soluble TNF-Ξ± Production by Acute Ethanol Exposure

    Get PDF
    Toll-like receptors (TLRs) play a fundamental role in the immune system by detecting pathogen associated molecular patterns (PAMPs) to sense host infection. Ethanol at doses relevant for humans inhibits the pathogen induced cytokine response mediated through TLRs. The current study was designed to investigate the mechanisms of this effect by determining whether ethanol inhibits TLR3 and TLR4 mediated TNF-Ξ± secretion through inhibition of transcription factor activation or post-transcriptional effects. In NF-ΞΊB reporter mice, activation of NF-ΞΊB in vivo by LPS was inhibited by ethanol (LPS alone yielded 170,000Β±35,300 arbitrary units of light emission; LPS plus ethanol yielded 56,120Β±16880, pβ€Š=β€Š0.04). Inhibition of protein synthesis by cycloheximide revealed that poly I:C- or LPS-induced secreted TNF-Ξ± is synthesized de novo, not released from cellular stores. Using real time RT-PCR, we found inhibition of LPS and poly I:C induced TNF-Ξ± gene transcription by ethanol. Using an inhibitor of tumor necrosis factor alpha converting enzyme (TACE), we found that shedding caused by TACE is a prerequisite for TNF-Ξ± release after pathogen challenge. Flow cytometry was used to investigate if ethanol decreases TNF-Ξ± secretion by inhibition of TACE. In cells treated with LPS, ethanol decreased both TNF-Ξ± cell surface expression and secretion. For example, 4.69Β±0.60% of untreated cells were positive for cell surface TNF-Ξ±, LPS increased this to 25.18Β±0.85%, which was inhibited by ethanol (86.8 mM) to 14.29Β±0.39% and increased by a TACE inhibitor to 57.88Β±0.62%. In contrast, cells treated with poly I:C had decreased secretion of TNF-Ξ± but not cell surface expression. There was some evidence for inhibition of TACE by ethanol in the case of LPS, but decreased TNF-Ξ± gene expression seems to be the major mechanism of ethanol action in this system

    Circulating mediators of inflammation and immune activation in AIDS-related non-Hodgkin lymphoma

    Get PDF
    Background: Non-Hodgkin lymphoma (NHL) is the most common AIDS-related malignancy in developed countries. An elevated risk of developing NHL persists among HIV-infected individuals in comparison to the general population despite the advent of effective antiretroviral therapy. The mechanisms underlying the development of AIDS-related NHL (A-NHL) are not fully understood, but likely involve persistent B-cell activation and inflammation. Methods: This was a nested case-control study within the ongoing prospective Multicenter AIDS Cohort Study (MACS). Cases included 47 HIV-positive male subjects diagnosed with high-grade B-cell NHL. Controls were matched to each case from among participating HIV-positive males who did not develop any malignancy. Matching criteria included time HIV+ or since AIDS diagnosis, age, race and CD4+ cell count. Sera were tested for 161 serum biomarkers using multiplexed beadbased immunoassays. Results: A subset of 17 biomarkers, including cytokines, chemokines, acute phase proteins, tissue remodeling agents and bone metabolic mediators was identified to be significantly altered in A-NHL cases in comparison to controls. Many of the biomarkers included in this subset were positively correlated with HIV viral load. A pathway analysis of our results revealed an extensive network of interactions between current and previously identified biomarkers. Conclusions: These findings support the current hypothesis that A-NHL develops in the context of persistent immune stimulation and inflammation. Further analysis of the biomarkers identified in this report should enhance our ability to diagnose, monitor and treat this disease. Β© 2014 Nolen et al

    Innate Immune Function in Placenta and Cord Blood of Hepatitis C – Seropositive Mother-Infant Dyads

    Get PDF
    Vertical transmission accounts for the majority of pediatric cases of hepatitis C viral (HCV) infection. In contrast to the adult population who develop persistent viremia in ∼80% of cases following exposure, the rate of mother-to-child transmission (2–6%) is strikingly low. Protection from vertical transmission likely requires the coordination of multiple components of the immune system. Placenta and decidua provide a direct connection between mother and infant. We hypothesized that innate immune responses would differ across the three compartments (decidua, placenta and cord blood) and that hepatitis C exposure would modify innate immunity in these tissues. The study was comprised of HCV-infected and healthy control mother and infant pairs from whom cord blood, placenta and decidua were collected with isolation of mononuclear cells. Multiparameter flow cytometry was performed to assess the phenotype, intracellular cytokine production and cytotoxicity of the cells. In keeping with a model where the maternal-fetal interface provides antiviral protection, we found a gradient in proportional frequencies of NKT and Ξ³Ξ΄-T cells being higher in placenta than cord blood. Cytotoxicity of NK and NKT cells was enhanced in placenta and placental NKT cytotoxicity was further increased by HCV infection. HCV exposure had multiple effects on innate cells including a decrease in activation markers (CD69, TRAIL and NKp44) on NK cells and a decrease in plasmacytoid dendritic cells in both placenta and cord blood of exposed infants. In summary, the placenta represents an active innate immunological organ that provides antiviral protection against HCV transmission in the majority of cases; the increased incidence in preterm labor previously described in HCV-seropositive mothers may be related to enhanced cytotoxicity of NKT cells

    IL28B Genetic Variation Is Associated with Spontaneous Clearance of Hepatitis C Virus, Treatment Response, Serum IL-28B Levels in Chinese Population

    Get PDF
    &lt;p&gt;&lt;b&gt;Background:&lt;/b&gt; The interleukin-28B gene (IL28B) locus has been associated with host resistance to hepatitis C virus (HCV) infection and response to PEG-IFN/RBV treatment in western populations. This study was to determine whether this gene variant is also associated with spontaneous clearance of HCV infection, treatment response and IL-28B protein production in Chinese patients.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Methods:&lt;/b&gt; We genotyped IL28B genetic variations (rs12980275, rs8103142, rs8099917 and rs12979860) by pyrosequencing DNA samples from cohorts consisting of 529 subjects with persistent HCV infection, 196 subjects who cleared the infection, 171 healthy individuals and 235 chronic HCV patients underwent IFN/RBV treatment. The expression of IL-28B were measured by ELISA and RT-PCR.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Results:&lt;/b&gt; We found that the four IL28B variants were in complete linkage disequilibrium (r2 = 0.97–0.98). The rs12979860 CC genotype was strongly associated with spontaneously HCV clearance and successful IFN/RBV treatment compared to the CT/TT. IL-28B levels in persistent HCV patients were significantly lower than subjects who spontaneously resolved HCV and healthy controls and were also associated with high levels of ALT (alanine aminotransferase) and AST (aspartate aminotransferase). IL-28B levels were also significantly lower in individuals carrying T alleles than CC homozygous.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Conclusions:&lt;/b&gt; Thus, the rs12979860-CC variant upstream of IL28B gene is associated with spontaneous clearance of HCV, susceptible to IFN/RBV treatment and increased IL-28B levels in this Chinese population.&lt;/p&gt

    Circulating sCD14 Is Associated with Virological Response to Pegylated-Interferon-Alpha/Ribavirin Treatment in HIV/HCV Co-Infected Patients

    Get PDF
    Microbial translocation (MT) through the gut accounts for immune activation and CD4+ loss in HIV and may influence HCV disease progression in HIV/HCV co-infection. We asked whether increased MT and immune activation may hamper anti-HCV response in HIV/HCV patients.98 HIV/HCV patients who received pegylated-alpha-interferon (peg-INF-alpha)/ribavirin were retrospectively analyzed. Baseline MT (lipopolysaccharide, LPS), host response to MT (sCD14), CD38+HLA-DR+CD4+/CD8+, HCV genotype, severity of liver disease were assessed according to Early Virological Response (EVR: HCV-RNA <50 IU/mL at week 12 of therapy or β‰₯2 log(10) reduction from baseline after 12 weeks of therapy) and Sustained Virological Response (SVR: HCV-RNA <50 IU/mL 24 weeks after end of therapy). Mann-Whitney/Chi-square test and Pearson's correlation were used. Multivariable regression was performed to determine factors associated with EVR/SVR.71 patients displayed EVR; 41 SVR. Patients with HCV genotypes 1-4 and cirrhosis presented a trend to higher sCD14, compared to patients with genotypes 2-3 (pβ€Š=β€Š0.053) and no cirrhosis (pβ€Š=β€Š0.052). EVR and SVR patients showed lower levels of circulating sCD14 (pβ€Š=β€Š0.0001, pβ€Š=β€Š0.026, respectively), but similar T-cell activation compared to Non-EVR (Null Responders, NR) and Non-SVR (N-SVR) subjects. sCD14 resulted the main predictive factor of EVR (0.145 for each sCD14 unit more, 95%CI 0.031-0.688, pβ€Š=β€Š0.015). SVR was associated only with HCV genotypes 2-3 (AOR 0.022 for genotypes 1-4 vs 2-3, 95%CI 0.001-0.469, pβ€Š=β€Š0.014).In HIV/HCV patients sCD14 correlates with the severity of liver disease and predicts early response to peg-INF-alpha/ribavirin, suggesting MT-driven immune activation as pathway of HIV/HCV co-infection and response to therapy

    DCs Pulsed with Novel HLA-A2-Restricted CTL Epitopes against Hepatitis C Virus Induced a Broadly Reactive Anti-HCV-Specific T Lymphocyte Response

    Get PDF
    OBJECTIVE: To determine the capacity of dendritic cells (DCs) loaded with single or multiple-peptide mixtures of novel hepatitis C virus (HCV) epitopes to stimulate HCV-specific cytotoxic T lymphocyte (CTL) effector functions. METHODS: A bioinformatics approach was used to predict HLA-A2-restricted HCV-specific CTL epitopes, and the predicted peptides identified from this screen were synthesized. Subsequent IFN-Ξ³ ELISPOT analysis detected the stimulating function of these peptides in peripheral blood mononuclear cells (PBMCs) from both chronic and self-limited HCV infected subjects (subjects exhibiting spontaneous HCV clearance). Mature DCs, derived in vitro from CD14(+) monocytes harvested from the study subjects by incubation with appropriate cytokine cocktails, were loaded with novel peptide or epitope peptide mixtures and co-cultured with autologous T lymphocytes. Granzyme B (GrB) and IFN-Ξ³ ELISPOT analysis was used to test for epitope-specific CTL responses. T-cell-derived cytokines contained in the co-cultured supernatant were detected by flow cytometry. RESULTS: We identified 7 novel HLA-A2-restricted HCV-specific CTL epitopes that increased the frequency of IFN-Ξ³-producing T cells compared to other epitopes, as assayed by measuring spot forming cells (SFCs). Two epitopes had the strongest stimulating capability in the self-limited subjects, one found in the E2 and one in the NS2 region of HCV; five epitopes had a strong stimulating capacity in both chronic and self-limited HCV infection, but were stronger in the self-limited subjects. They were distributed in E2, NS2, NS3, NS4, and NS5 regions of HCV, respectively. We also found that mDCs loaded with novel peptide mixtures could significantly increase GrB and IFN-Ξ³ SFCs as compared to single peptides, especially in chronic HCV infection subjects. Additionally, we found that DCs pulsed with multiple epitope peptide mixtures induced a Th1-biased immune response. CONCLUSIONS: Seven novel and strongly stimulating HLA-A2-restricted HCV-specific CTL epitopes were identified. Furthermore, DCs loaded with multiple-epitope peptide mixtures induced epitope-specific CTLs responses
    • …
    corecore