900 research outputs found
Silent MST approximation for tiny memory
In network distributed computing, minimum spanning tree (MST) is one of the
key problems, and silent self-stabilization one of the most demanding
fault-tolerance properties. For this problem and this model, a polynomial-time
algorithm with memory is known for the state model. This is
memory optimal for weights in the classic range (where
is the size of the network). In this paper, we go below this
memory, using approximation and parametrized complexity.
More specifically, our contributions are two-fold. We introduce a second
parameter~, which is the space needed to encode a weight, and we design a
silent polynomial-time self-stabilizing algorithm, with space . In turn, this allows us to get an approximation algorithm for the problem,
with a trade-off between the approximation ratio of the solution and the space
used. For polynomial weights, this trade-off goes smoothly from memory for an -approximation, to memory for exact solutions,
with for example memory for a 2-approximation
A Formal Approach to Exploiting Multi-Stage Attacks based on File-System Vulnerabilities of Web Applications (Extended Version)
Web applications require access to the file-system for many different tasks.
When analyzing the security of a web application, secu- rity analysts should
thus consider the impact that file-system operations have on the security of
the whole application. Moreover, the analysis should take into consideration
how file-system vulnerabilities might in- teract with other vulnerabilities
leading an attacker to breach into the web application. In this paper, we first
propose a classification of file- system vulnerabilities, and then, based on
this classification, we present a formal approach that allows one to exploit
file-system vulnerabilities. We give a formal representation of web
applications, databases and file- systems, and show how to reason about
file-system vulnerabilities. We also show how to combine file-system
vulnerabilities and SQL-Injection vulnerabilities for the identification of
complex, multi-stage attacks. We have developed an automatic tool that
implements our approach and we show its efficiency by discussing several
real-world case studies, which are witness to the fact that our tool can
generate, and exploit, complex attacks that, to the best of our knowledge, no
other state-of-the-art-tool for the security of web applications can find
Tight Bounds for MIS in Multichannel Radio Networks
Daum et al. [PODC'13] presented an algorithm that computes a maximal
independent set (MIS) within
rounds in an -node multichannel radio network with communication
channels. The paper uses a multichannel variant of the standard graph-based
radio network model without collision detection and it assumes that the network
graph is a polynomially bounded independence graph (BIG), a natural
combinatorial generalization of well-known geographic families. The upper bound
of that paper is known to be optimal up to a polyloglog factor.
In this paper, we adapt algorithm and analysis to improve the result in two
ways. Mainly, we get rid of the polyloglog factor in the runtime and we thus
obtain an asymptotically optimal multichannel radio network MIS algorithm. In
addition, our new analysis allows to generalize the class of graphs from those
with polynomially bounded local independence to graphs where the local
independence is bounded by an arbitrary function of the neighborhood radius.Comment: 37 pages, to be published in DISC 201
Fast and Compact Distributed Verification and Self-Stabilization of a DFS Tree
We present algorithms for distributed verification and silent-stabilization
of a DFS(Depth First Search) spanning tree of a connected network. Computing
and maintaining such a DFS tree is an important task, e.g., for constructing
efficient routing schemes. Our algorithm improves upon previous work in various
ways. Comparable previous work has space and time complexities of bits per node and respectively, where is the highest
degree of a node, is the number of nodes and is the diameter of the
network. In contrast, our algorithm has a space complexity of bits
per node, which is optimal for silent-stabilizing spanning trees and runs in
time. In addition, our solution is modular since it utilizes the
distributed verification algorithm as an independent subtask of the overall
solution. It is possible to use the verification algorithm as a stand alone
task or as a subtask in another algorithm. To demonstrate the simplicity of
constructing efficient DFS algorithms using the modular approach, We also
present a (non-sielnt) self-stabilizing DFS token circulation algorithm for
general networks based on our silent-stabilizing DFS tree. The complexities of
this token circulation algorithm are comparable to the known ones
Nanoscale electrical conductivity imaging using a nitrogen-vacancy center in diamond
The electrical conductivity of a material can feature subtle, nontrivial, and
spatially-varying signatures with critical insight into the material's
underlying physics. Here we demonstrate a conductivity imaging technique based
on the atom-sized nitrogen-vacancy (NV) defect in diamond that offers local,
quantitative, and noninvasive conductivity imaging with nanoscale spatial
resolution. We monitor the spin relaxation rate of a single NV center in a
scanning probe geometry to quantitatively image the magnetic fluctuations
produced by thermal electron motion in nanopatterned metallic conductors. We
achieve 40-nm scale spatial resolution of the conductivity and realize a
25-fold increase in imaging speed by implementing spin-to-charge conversion
readout of a shallow NV center. NV-based conductivity imaging can probe
condensed-matter systems in a new regime, and as a model example, we project
readily achievable imaging of nanoscale phase separation in complex oxides.Comment: Supplementary information at en
On Secure Implementation of an IHE XUA-Based Protocol for Authenticating Healthcare Professionals
The importance of the Electronic Health Record (EHR) has been addressed in recent years by governments and institutions.Many large scale projects have been funded with the aim to allow healthcare professionals to consult patients data. Properties such as confidentiality, authentication and authorization are the key for the success for these projects. The Integrating the Healthcare Enterprise (IHE) initiative promotes the coordinated use of established standards for authenticated and secure EHR exchanges among clinics and hospitals. In particular, the IHE integration profile named XUA permits to attest user identities by relying on SAML assertions, i.e. XML documents containing authentication statements. In this paper, we provide a formal model for the secure issuance of such an assertion. We first specify the scenario using the process calculus COWS and then analyse it using the model checker CMC. Our analysis reveals a potential flaw in the XUA profile when using a SAML assertion in an unprotected network. We then suggest a solution for this flaw, and model check and implement this solution to show that it is secure and feasible
A Byzantine-Fault Tolerant Self-Stabilizing Protocol for Distributed Clock Synchronization Systems
Embedded distributed systems have become an integral part of safety-critical computing applications, necessitating system designs that incorporate fault tolerant clock synchronization in order to achieve ultra-reliable assurance levels. Many efficient clock synchronization protocols do not, however, address Byzantine failures, and most protocols that do tolerate Byzantine failures do not self-stabilize. Of the Byzantine self-stabilizing clock synchronization algorithms that exist in the literature, they are based on either unjustifiably strong assumptions about initial synchrony of the nodes or on the existence of a common pulse at the nodes. The Byzantine self-stabilizing clock synchronization protocol presented here does not rely on any assumptions about the initial state of the clocks. Furthermore, there is neither a central clock nor an externally generated pulse system. The proposed protocol converges deterministically, is scalable, and self-stabilizes in a short amount of time. The convergence time is linear with respect to the self-stabilization period. Proofs of the correctness of the protocol as well as the results of formal verification efforts are reported
Local Charge of the nu=5/2 Fractional Quantum Hall State
Electrons in two dimensions and strong magnetic fields effectively lose their
kinetic energy and display exotic behavior dominated by Coulomb forces. When
the ratio of electrons to magnetic flux quanta in the system is near 5/2, the
unique correlated phase that emerges is predicted to be gapped with
fractionally charged quasiparticles and a ground state degeneracy that grows
exponentially as these quasiparticles are introduced. Interestingly, the only
way to transform between the many ground states would be to braid the
fractional excitations around each other, a property with applications in
quantum information processing. Here we present the first observation of
localized quasiparticles at nu=5/2, confined to puddles by disorder. Using a
local electrometer to compare how quasiparticles at nu=5/2 and nu=7/3 charge
these puddles, we are able to extract the ratio of local charges for these
states. Averaged over several disorder configurations and samples, we find the
ratio to be 4/3, suggesting that the local charges are e/3 at seven thirds and
e/4 at five halves, in agreement with theoretical predictions. This
confirmation of localized e/4 quasiparticles is necessary for proposed
interferometry experiments to test statistics and computational ability of the
state at nu=5/2.Comment: 6 pages, 4 figures corrected titl
- ā¦