900 research outputs found

    Silent MST approximation for tiny memory

    Get PDF
    In network distributed computing, minimum spanning tree (MST) is one of the key problems, and silent self-stabilization one of the most demanding fault-tolerance properties. For this problem and this model, a polynomial-time algorithm with O(logā”2ā€‰ā£n)O(\log^2\!n) memory is known for the state model. This is memory optimal for weights in the classic [1,poly(n)][1,\text{poly}(n)] range (where nn is the size of the network). In this paper, we go below this O(logā”2ā€‰ā£n)O(\log^2\!n) memory, using approximation and parametrized complexity. More specifically, our contributions are two-fold. We introduce a second parameter~ss, which is the space needed to encode a weight, and we design a silent polynomial-time self-stabilizing algorithm, with space O(logā”nā‹…s)O(\log n \cdot s). In turn, this allows us to get an approximation algorithm for the problem, with a trade-off between the approximation ratio of the solution and the space used. For polynomial weights, this trade-off goes smoothly from memory O(logā”n)O(\log n) for an nn-approximation, to memory O(logā”2ā€‰ā£n)O(\log^2\!n) for exact solutions, with for example memory O(logā”nlogā”logā”n)O(\log n\log\log n) for a 2-approximation

    A Formal Approach to Exploiting Multi-Stage Attacks based on File-System Vulnerabilities of Web Applications (Extended Version)

    Full text link
    Web applications require access to the file-system for many different tasks. When analyzing the security of a web application, secu- rity analysts should thus consider the impact that file-system operations have on the security of the whole application. Moreover, the analysis should take into consideration how file-system vulnerabilities might in- teract with other vulnerabilities leading an attacker to breach into the web application. In this paper, we first propose a classification of file- system vulnerabilities, and then, based on this classification, we present a formal approach that allows one to exploit file-system vulnerabilities. We give a formal representation of web applications, databases and file- systems, and show how to reason about file-system vulnerabilities. We also show how to combine file-system vulnerabilities and SQL-Injection vulnerabilities for the identification of complex, multi-stage attacks. We have developed an automatic tool that implements our approach and we show its efficiency by discussing several real-world case studies, which are witness to the fact that our tool can generate, and exploit, complex attacks that, to the best of our knowledge, no other state-of-the-art-tool for the security of web applications can find

    Tight Bounds for MIS in Multichannel Radio Networks

    Full text link
    Daum et al. [PODC'13] presented an algorithm that computes a maximal independent set (MIS) within O(logā”2n/F+logā”npolyloglogn)O(\log^2 n/F+\log n \mathrm{polyloglog} n) rounds in an nn-node multichannel radio network with FF communication channels. The paper uses a multichannel variant of the standard graph-based radio network model without collision detection and it assumes that the network graph is a polynomially bounded independence graph (BIG), a natural combinatorial generalization of well-known geographic families. The upper bound of that paper is known to be optimal up to a polyloglog factor. In this paper, we adapt algorithm and analysis to improve the result in two ways. Mainly, we get rid of the polyloglog factor in the runtime and we thus obtain an asymptotically optimal multichannel radio network MIS algorithm. In addition, our new analysis allows to generalize the class of graphs from those with polynomially bounded local independence to graphs where the local independence is bounded by an arbitrary function of the neighborhood radius.Comment: 37 pages, to be published in DISC 201

    Fast and Compact Distributed Verification and Self-Stabilization of a DFS Tree

    Full text link
    We present algorithms for distributed verification and silent-stabilization of a DFS(Depth First Search) spanning tree of a connected network. Computing and maintaining such a DFS tree is an important task, e.g., for constructing efficient routing schemes. Our algorithm improves upon previous work in various ways. Comparable previous work has space and time complexities of O(nlogā”Ī”)O(n\log \Delta) bits per node and O(nD)O(nD) respectively, where Ī”\Delta is the highest degree of a node, nn is the number of nodes and DD is the diameter of the network. In contrast, our algorithm has a space complexity of O(logā”n)O(\log n) bits per node, which is optimal for silent-stabilizing spanning trees and runs in O(n)O(n) time. In addition, our solution is modular since it utilizes the distributed verification algorithm as an independent subtask of the overall solution. It is possible to use the verification algorithm as a stand alone task or as a subtask in another algorithm. To demonstrate the simplicity of constructing efficient DFS algorithms using the modular approach, We also present a (non-sielnt) self-stabilizing DFS token circulation algorithm for general networks based on our silent-stabilizing DFS tree. The complexities of this token circulation algorithm are comparable to the known ones

    Nanoscale electrical conductivity imaging using a nitrogen-vacancy center in diamond

    Full text link
    The electrical conductivity of a material can feature subtle, nontrivial, and spatially-varying signatures with critical insight into the material's underlying physics. Here we demonstrate a conductivity imaging technique based on the atom-sized nitrogen-vacancy (NV) defect in diamond that offers local, quantitative, and noninvasive conductivity imaging with nanoscale spatial resolution. We monitor the spin relaxation rate of a single NV center in a scanning probe geometry to quantitatively image the magnetic fluctuations produced by thermal electron motion in nanopatterned metallic conductors. We achieve 40-nm scale spatial resolution of the conductivity and realize a 25-fold increase in imaging speed by implementing spin-to-charge conversion readout of a shallow NV center. NV-based conductivity imaging can probe condensed-matter systems in a new regime, and as a model example, we project readily achievable imaging of nanoscale phase separation in complex oxides.Comment: Supplementary information at en

    On Secure Implementation of an IHE XUA-Based Protocol for Authenticating Healthcare Professionals

    Get PDF
    The importance of the Electronic Health Record (EHR) has been addressed in recent years by governments and institutions.Many large scale projects have been funded with the aim to allow healthcare professionals to consult patients data. Properties such as confidentiality, authentication and authorization are the key for the success for these projects. The Integrating the Healthcare Enterprise (IHE) initiative promotes the coordinated use of established standards for authenticated and secure EHR exchanges among clinics and hospitals. In particular, the IHE integration profile named XUA permits to attest user identities by relying on SAML assertions, i.e. XML documents containing authentication statements. In this paper, we provide a formal model for the secure issuance of such an assertion. We first specify the scenario using the process calculus COWS and then analyse it using the model checker CMC. Our analysis reveals a potential flaw in the XUA profile when using a SAML assertion in an unprotected network. We then suggest a solution for this flaw, and model check and implement this solution to show that it is secure and feasible

    A Byzantine-Fault Tolerant Self-Stabilizing Protocol for Distributed Clock Synchronization Systems

    Get PDF
    Embedded distributed systems have become an integral part of safety-critical computing applications, necessitating system designs that incorporate fault tolerant clock synchronization in order to achieve ultra-reliable assurance levels. Many efficient clock synchronization protocols do not, however, address Byzantine failures, and most protocols that do tolerate Byzantine failures do not self-stabilize. Of the Byzantine self-stabilizing clock synchronization algorithms that exist in the literature, they are based on either unjustifiably strong assumptions about initial synchrony of the nodes or on the existence of a common pulse at the nodes. The Byzantine self-stabilizing clock synchronization protocol presented here does not rely on any assumptions about the initial state of the clocks. Furthermore, there is neither a central clock nor an externally generated pulse system. The proposed protocol converges deterministically, is scalable, and self-stabilizes in a short amount of time. The convergence time is linear with respect to the self-stabilization period. Proofs of the correctness of the protocol as well as the results of formal verification efforts are reported

    Local Charge of the nu=5/2 Fractional Quantum Hall State

    Full text link
    Electrons in two dimensions and strong magnetic fields effectively lose their kinetic energy and display exotic behavior dominated by Coulomb forces. When the ratio of electrons to magnetic flux quanta in the system is near 5/2, the unique correlated phase that emerges is predicted to be gapped with fractionally charged quasiparticles and a ground state degeneracy that grows exponentially as these quasiparticles are introduced. Interestingly, the only way to transform between the many ground states would be to braid the fractional excitations around each other, a property with applications in quantum information processing. Here we present the first observation of localized quasiparticles at nu=5/2, confined to puddles by disorder. Using a local electrometer to compare how quasiparticles at nu=5/2 and nu=7/3 charge these puddles, we are able to extract the ratio of local charges for these states. Averaged over several disorder configurations and samples, we find the ratio to be 4/3, suggesting that the local charges are e/3 at seven thirds and e/4 at five halves, in agreement with theoretical predictions. This confirmation of localized e/4 quasiparticles is necessary for proposed interferometry experiments to test statistics and computational ability of the state at nu=5/2.Comment: 6 pages, 4 figures corrected titl
    • ā€¦
    corecore