9 research outputs found

    VP22-mediated intercellular transport for suicide gene therapy under oxic and hypoxic conditions

    No full text
    During herpes simplex virus type 1 (HSV 1) infection, the tegument protein VP22 is exported from infected cells to the nuclei of surrounding uninfected cells. These intercellular transport characteristics have prompted the exploitation of VP22 fusion proteins for cancer gene therapy, with the goal of maximizing the bystander effect. Since solid tumors contain hypoxic cell populations that are often refractive to therapy, for efficient targeting, it would be optimal if VP22 functioned even at reduced oxygen concentrations. In the present work, VP22 activity under hypoxic conditions was examined for the first time. Plasmid-transfected human glioma U87-MG and U373-MG cells expressing VP22 fused to the green fluorescent protein (GFP) showed protein export to untransfected cells under tumor oxygenation conditions (0-5% O(2)). For suicide gene therapy, VP22 activity was demonstrated under hypoxia by coupling VP22 to the HSV thymidine kinase (HSVtk). In the presence of the prodrug ganciclovir, cell cultures expressing VP22-HSVtk showed a significant increase in toxicity compared with cells transfected with a construct containing HSVtk only, under all tested conditions. To allow effective suicide gene therapy and simultaneous visualization of therapeutic enzyme localization, a triple fusion protein GFP-HSVtk-VP22 was engineered. Functionality of all components was demonstrated under oxia and hypoxia

    Airport Business Excellence Model: Development and First Application

    No full text

    A Novel 8-Predictors Signature to Predict Complicated Disease Course in Pediatric-onset Crohn’s Disease: A Population-based Study

    No full text
    International audienceBackground The identification of patients at high risk of a disabling disease course would be invaluable in guiding initial therapy in Crohn’s disease (CD). Our objective was to evaluate a combination of clinical, serological, and genetic factors to predict complicated disease course in pediatric-onset CD. Methods Data for pediatric-onset CD patients, diagnosed before 17 years of age between 1988 and 2004 and followed more than 5 years, were extracted from the population-based EPIMAD registry. The main outcome was defined by the occurrence of complicated behavior (stricturing or penetrating) and/or intestinal resection within the 5 years following diagnosis. Lasso logistic regression models were used to build a predictive model based on clinical data at diagnosis, serological data (ASCA, pANCA, anti-OmpC, anti-Cbir1, anti-Fla2, anti-Flax), and 369 candidate single nucleotide polymorphisms. Results In total, 156 children with an inflammatory (B1) disease at diagnosis were included. Among them, 35% (n = 54) progressed to a complicated behavior or an intestinal resection within the 5 years following diagnosis. The best predictive model (PREDICT-EPIMAD) included the location at diagnosis, pANCA, and 6 single nucleotide polymorphisms. This model showed good discrimination and good calibration, with an area under the curve of 0.80 after correction for optimism bias (sensitivity, 79%, specificity, 74%, positive predictive value, 61%, negative predictive value, 87%). Decision curve analysis confirmed the clinical utility of the model. Conclusions A combination of clinical, serotypic, and genotypic variables can predict disease progression in this population-based pediatric-onset CD cohort. Independent validation is needed before it can be used in clinical practice
    corecore