162 research outputs found

    Plasma Cleaning of LCLS-II-HE verification cryomodule cavities

    Full text link
    Plasma cleaning is a technique that can be applied in superconducting radio-frequency (SRF) cavities in situ in cryomodules in order to decrease their level of field emission. We developed the technique for the Linac Coherent Light Source II (LCLS-II) cavities and we present in this paper the full development and application of plasma processing to the LCLS-II High Energy (HE) verification cryomodule (vCM). We validated our plasma processing procedure on the vCM, fully processing four out of eight cavities of this CM, demonstrating that cavities performance were preserved in terms of both accelerating field and quality factor. Applying plasma processing to this clean, record breaking cryomodule also showed that no contaminants were introduced in the string, maintaining the vCM field emission-free up to the maximum field reached by each cavity. We also found that plasma processing eliminates multipacting (MP) induced quenches that are typically observed frequently within the MP band field range. This suggests that plasma processing could be employed in situ in CMs to mitigate both field emission and multipacting, significantly decreasing the testing time of cryomodules, the linac commissioning time and cost and increasing the accelerator reliability.Comment: 11 pages, 10 figure

    Extensive recombination events and horizontal gene transfer shaped the Legionella pneumophila genomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Legionella pneumophila </it>is an intracellular pathogen of environmental protozoa. When humans inhale contaminated aerosols this bacterium may cause a severe pneumonia called Legionnaires' disease. Despite the abundance of dozens of <it>Legionella </it>species in aquatic reservoirs, the vast majority of human disease is caused by a single serogroup (Sg) of a single species, namely <it>L. pneumophila </it>Sg1. To get further insights into genome dynamics and evolution of Sg1 strains, we sequenced strains Lorraine and HL 0604 1035 (Sg1) and compared them to the available sequences of Sg1 strains Paris, Lens, Corby and Philadelphia, resulting in a comprehensive multigenome analysis.</p> <p>Results</p> <p>We show that <it>L. pneumophila </it>Sg1 has a highly conserved and syntenic core genome that comprises the many eukaryotic like proteins and a conserved repertoire of over 200 Dot/Icm type IV secreted substrates. However, recombination events and horizontal gene transfer are frequent. In particular the analyses of the distribution of nucleotide polymorphisms suggests that large chromosomal fragments of over 200 kbs are exchanged between <it>L. pneumophila </it>strains and contribute to the genome dynamics in the natural population. The many secretion systems present might be implicated in exchange of these fragments by conjugal transfer. Plasmids also play a role in genome diversification and are exchanged among strains and circulate between different <it>Legionella </it>species.</p> <p>Conclusion</p> <p>Horizontal gene transfer among bacteria and from eukaryotes to <it>L. pneumophila </it>as well as recombination between strains allows different clones to evolve into predominant disease clones and others to replace them subsequently within relatively short periods of time.</p
    • 

    corecore