77 research outputs found
Do higher alarm thresholds for arterial blood pressure lead to less perioperative hypotension? A retrospective, observational cohort study
Arterial blood pressure is one of the vital signs monitored mandatory in anaesthetised patients. Even short episodes of intraoperative hypotension are associated with increased risk for postoperative organ dysfunction such as acute kidney injury and myocardial injury. Since there is little evidence whether higher alarm thresholds in patient monitors can help prevent intraoperative hypotension, we analysed the blood pressure data before (group 1) and after (group 2) the implementation of altered hypotension alarm settings. The study was conducted as a retrospective observational cohort study in a large surgical centre with 32 operating theatres. Alarm thresholds for hypotension alarm for mean arterial pressure (MAP) were altered from 60 (before) to 65 mmHg for invasive measurement and 70 mmHg for noninvasive measurement. Blood pressure data from electronic anaesthesia records of 4222 patients (1982 and 2240 in group 1 and 2, respectively) with 406,623 blood pressure values undergoing noncardiac surgery were included. We analysed (A) the proportion of blood pressure measurements below the threshold among all measurements by quasi-binomial regression and (B) whether at least one blood pressure measurement below the threshold occurred by logistic regression. Hypotension was defined as MAP < 65 mmHg. There was no significant difference in overall proportions of hypotensive episodes for mean arterial pressure before and after the adjustment of alarm settings (mean proportion of values below 65 mmHg were 6.05% in group 1 and 5.99% in group 2). The risk of ever experiencing a hypotensive episode during anaesthesia was significantly lower in group 2 with an odds ratio of 0.84 (p = 0.029). In conclusion, higher alarm thresholds do not generally lead to less hypotensive episodes perioperatively. There was a slight but significant reduction of the occurrence of intraoperative hypotension in the presence of higher thresholds for blood pressure alarms. However, this reduction only seems to be present in patients with very few hypotensive episodes
Delayed intracardial shunting and hypoxemia after massive pulmonary embolism in a patient with a biventricular assist device
We describe the interdisciplinary management of a 34-year-old woman with dilated cardiomyopathy three months postpartum on a cardiac biventricular assist device (BVAD) as bridge to heart transplantation with delayed onset of intracardial shunting and subsequent hypoxemia due to massive pulmonary embolism. After emergency surgical embolectomy pulmonary function was highly compromised (PaO2/FiO2 54) requiring bifemoral veno-venous extracorporeal membrane oxygenation. Transesophageal echocardiography detected atrial level hypoxemic right-to-left shunting through a patent foramen ovale (PFO). Percutaneous closure of the PFO was achieved with a PFO occluder device. After placing the PFO occluder device oxygenation increased significantly (Δ paO2 119 Torr). The patient received heart transplantation 20 weeks after BVAD implantation and was discharged from ICU 3 weeks after transplantation
Multi-Messenger Gravitational Wave Searches with Pulsar Timing Arrays: Application to 3C66B Using the NANOGrav 11-year Data Set
When galaxies merge, the supermassive black holes in their centers may form
binaries and, during the process of merger, emit low-frequency gravitational
radiation in the process. In this paper we consider the galaxy 3C66B, which was
used as the target of the first multi-messenger search for gravitational waves.
Due to the observed periodicities present in the photometric and astrometric
data of the source of the source, it has been theorized to contain a
supermassive black hole binary. Its apparent 1.05-year orbital period would
place the gravitational wave emission directly in the pulsar timing band. Since
the first pulsar timing array study of 3C66B, revised models of the source have
been published, and timing array sensitivities and techniques have improved
dramatically. With these advances, we further constrain the chirp mass of the
potential supermassive black hole binary in 3C66B to less than using data from the NANOGrav 11-year data set. This
upper limit provides a factor of 1.6 improvement over previous limits, and a
factor of 4.3 over the first search done. Nevertheless, the most recent orbital
model for the source is still consistent with our limit from pulsar timing
array data. In addition, we are able to quantify the improvement made by the
inclusion of source properties gleaned from electromagnetic data to `blind'
pulsar timing array searches. With these methods, it is apparent that it is not
necessary to obtain exact a priori knowledge of the period of a binary to gain
meaningful astrophysical inferences.Comment: 14 pages, 6 figures. Accepted by Ap
The NANOGrav 11-Year Data Set: Arecibo Observatory Polarimetry And Pulse Microcomponents
We present the polarization pulse profiles for 28 pulsars observed with the
Arecibo Observatory by the North American Nanohertz Observatory for
Gravitational Waves (NANOGrav) timing project at 2.1 GHz, 1.4 GHz, and 430 MHz.
These profiles represent some of the most sensitive polarimetric millisecond
pulsar profiles to date, revealing the existence of microcomponents (that is,
pulse components with peak intensities much lower than the total pulse peak
intensity). Although microcomponents have been detected in some pulsars
previously, we present microcomponents for PSRs B1937+21, J1713+0747, and
J2234+0944 for the first time. These microcomponents can have an impact on
pulsar timing, geometry, and flux density determination. We present rotation
measures for all 28 pulsars, determined independently at different observation
frequencies and epochs, and find the Galactic magnetic fields derived from
these rotation measures to be consistent with current models. These
polarization profiles were made using measurement equation template matching,
which allows us to generate the polarimetric response of the Arecibo
Observatory on an epoch-by-epoch basis. We use this method to describe its time
variability, and find that the polarimetric responses of the Arecibo
Observatory's 1.4 and 2.1 GHz receivers vary significantly with time.Comment: 41 pages, 20 figure
The NANOGrav 11-year Data Set: High-precision Timing of 45 Millisecond Pulsars
We present high-precision timing data over time spans of up to 11 years for 45 millisecond pulsars observed as part of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) project, aimed at detecting and characterizing low-frequency gravitational waves. The pulsars were observed with the Arecibo Observatory and/or the Green Bank Telescope at frequencies ranging from 327 MHz to 2.3 GHz. Most pulsars were observed with approximately monthly cadence, and six high-timing-precision pulsars were observed weekly. All were observed at widely separated frequencies at each observing epoch in order to fit for time-variable dispersion delays. We describe our methods for data processing, time-of-arrival (TOA) calculation, and the implementation of a new, automated method for removing outlier TOAs. We fit a timing model for each pulsar that includes spin, astrometric, and (for binary pulsars) orbital parameters; time-variable dispersion delays; and parameters that quantify pulse-profile evolution with frequency. The timing solutions provide three new parallax measurements, two new Shapiro delay measurements, and two new measurements of significant orbital-period variations. We fit models that characterize sources of noise for each pulsar. We find that 11 pulsars show significant red noise, with generally smaller spectral indices than typically measured for non-recycled pulsars, possibly suggesting a different origin. A companion paper uses these data to constrain the strength of the gravitational-wave background
The NANOGrav 12.5-Year Data Set: Polarimetry and Faraday Rotation Measures from Observations of Millisecond Pulsars with the Green Bank Telescope
In this work, we present polarization profiles for 23 millisecond pulsars
observed at 820 MHz and 1500 MHz with the Green Bank Telescope as part of the
NANOGrav pulsar timing array. We calibrate the data using Mueller matrix
solutions calculated from observations of PSRs B1929+10 and J1022+1001. We
discuss the polarization profiles, which can be used to constrain pulsar
emission geometry, and present both the first published radio polarization
profiles for nine pulsars and the discovery of very low intensity average
profile components ("microcomponents") in four pulsars. Using the Faraday
rotation measures, we measure for each pulsar and use it to calculate the
Galactic magnetic field parallel to the line of sight for different lines of
sight through the interstellar medium. We fit for linear and sinusoidal trends
in time in the dispersion measure and Galactic magnetic field and detect
magnetic field variations with a period of one year in some pulsars, but
overall find that the variations in these parameters are more consistent with a
stochastic origin.Comment: 35 pages, 21 figures. Accepted to Ap
Bayesian Solar Wind Modeling with Pulsar Timing Arrays
Using Bayesian analyses we study the solar electron density with the NANOGrav
11-year pulsar timing array (PTA) dataset. Our model of the solar wind is
incorporated into a global fit starting from pulse times-of-arrival. We
introduce new tools developed for this global fit, including analytic
expressions for solar electron column densities and open source models for the
solar wind that port into existing PTA software. We perform an ab initio
recovery of various solar wind model parameters. We then demonstrate the
richness of information about the solar electron density, , that can be
gleaned from PTA data, including higher order corrections to the simple
model associated with a free-streaming wind (which are informative probes of
coronal acceleration physics), quarterly binned measurements of and a
continuous time-varying model for spanning approximately one solar cycle
period. Finally, we discuss the importance of our model for chromatic noise
mitigation in gravitational-wave analyses of pulsar timing data and the
potential of developing synergies between sophisticated PTA solar electron
density models and those developed by the solar physics community.Comment: 22 pages, 7 figures, Submitted to Ap
The NANOGrav 12.5-Year Data Set: Dispersion Measure Mis-Estimation with Varying Bandwidths
Noise characterization for pulsar-timing applications accounts for
interstellar dispersion by assuming a known frequency-dependence of the delay
it introduces in the times of arrival (TOAs). However, calculations of this
delay suffer from mis-estimations due to other chromatic effects in the
observations. The precision in modeling dispersion is dependent on the observed
bandwidth. In this work, we calculate the offsets in infinite-frequency TOAs
due to mis-estimations in the modeling of dispersion when using varying
bandwidths at the Green Bank Telescope. We use a set of broadband observations
of PSR J1643-1224, a pulsar with an excess of chromatic noise in its timing
residuals. We artificially restricted these observations to a narrowband
frequency range, then used both data sets to calculate residuals with a timing
model that does not include short-scale dispersion variations. By fitting the
resulting residuals to a dispersion model, and comparing the ensuing fitted
parameters, we quantify the dispersion mis-estimations. Moreover, by
calculating the autocovariance function of the parameters we obtained a
characteristic timescale over which the dispersion mis-estimations are
correlated. For PSR J1643-1224, which has one of the highest dispersion
measures (DM) in the NANOGrav pulsar timing array, we find that the
infinite-frequency TOAs suffer from a systematic offset of ~22 microseconds due
to DM mis-estimations, with correlations over ~1 month. For lower-DM pulsars,
the offset is ~7 microseconds. This error quantification can be used to provide
more robust noise modeling in NANOGrav's data, thereby increasing sensitivity
and improving parameter estimation in gravitational wave searches.Comment: 15 pages, 7 figure
The NANOGrav 12.5-Year Data Set:Dispersion Measure Misestimations with Varying Bandwidths
Noise characterization for pulsar-timing applications accounts for interstellar dispersion by assuming a known frequency dependence of the delay it introduces in the times of arrival (TOAs). However, calculations of this delay suffer from misestimations due to other chromatic effects in the observations. The precision in modeling dispersion is dependent on the observed bandwidth. In this work, we calculate the offsets in infinite-frequency TOAs due to misestimations in the modeling of dispersion when using varying bandwidths at the Green Bank Telescope. We use a set of broadband observations of PSR J1643−1224, a pulsar with unusual chromatic timing behavior. We artificially restricted these observations to a narrowband frequency range, then used both the broad- and narrowband data sets to calculate residuals with a timing model that does not account for time variations in the dispersion. By fitting the resulting residuals to a dispersion model and comparing the fits, we quantify the error introduced in the timing parameters due to using a reduced frequency range. Moreover, by calculating the autocovariance function of the parameters, we obtained a characteristic timescale over which the dispersion misestimates are correlated. For PSR J1643−1224, which has one of the highest dispersion measures (DM) in the NANOGrav pulsar timing array, we find that the infinite-frequency TOAs suffer from a systematic offset of ∼22 μs due to incomplete frequency sampling, with correlations over about one month. For lower-DM pulsars, the offset is ∼7 μs. This error quantification can be used to provide more robust noise modeling in the NANOGrav data, thereby increasing the sensitivity and improving the parameter estimation in gravitational wave searches
- …