10,051 research outputs found
Demographic viability of populations of \u3cem\u3eSilene regis\u3c/em\u3e in midwestern prairies: relationships with fire management, genetic variation, geographic location, population size and isolation
We studied the demographic viability of populations of a long-lived iteroparous prairie perennial, Silene regia, in relation to management regimes, population sizes, geographical region (Ohio and Indiana vs. Missouri and Arkansas), degree of isolation and amount of genetic variation. Demographic data were collected from 16 populations for up to 7 years.
This species has high survivorship, slow growth, frequent flowering and episodic seedling recruitment. Matrix projection methods were used to summarize population performance with and without recruitment. Median finite rates of increase by population varied from 0.57 to 1.82 and from 0.44 to 0.99, respectively.
Populations with the highest rates of increase had been burned. Six of eight populations, for which stochastic modelling predicted persistence for 1000 years, included fire in their management. None of the five populations with predicted 100-year extinction probabilities of 100% was managed for conservation or burned. An intermediate group of three populations with at least 10% probability of extinction between 100 and 1000 years was not managed, but was none the less kept open by mowing and herbicide application.
Analysis of composite elasticities showed that growth and fecundity terms were higher for growing (vs. declining) populations and that growth elasticity was higher in burned than unburned populations. Lack of burning shifts the elasticity spectrum from that typical of open habitat herbs (higher growth and fecundity elasticities) to values usually found for closed habitat herbs (higher survival elasticities).
In multivariate analyses predicting finite rates of increase (with and without recruitment), fire management and region were the strongest predictors, followed by genetic variation, population size, isolation and interactions of population size and fire, and region and fire. Populations with the highest rates of increase were burned, eastern, more genetically diverse, larger and less isolated. Discrimination of populations with different extinction risks (three classes) was related mainly to fire, genetic variation and region.
Most of these conclusions support conservation biology predictions that population viability will be highest in larger, less-isolated, more genetically diverse populations. However, management and geographic trends have overriding roles affecting demographic viability. Habitat fragmentation and genetic depletion have the potential to threaten residual prairie populations of S. regia, but lack of fire management appears to be the primary short-term threat
Non-commutative Complex Projective Spaces and the Standard Model
The standard model fermion spectrum, including a right handed neutrino, can
be obtained as a zero-mode of the Dirac operator on a space which is the
product of complex projective spaces of complex dimension two and three. The
construction requires the introduction of topologically non-trivial background
gauge fields. By borrowing from ideas in Connes' non-commutative geometry and
making the complex spaces `fuzzy' a matrix approximation to the fuzzy space
allows for three generations to emerge. The generations are associated with
three copies of space-time. Higgs' fields and Yukawa couplings can be
accommodated in the usual way.Comment: Contribution to conference in honour of A.P. Balachandran's 65th
birthday: "Space-time and Fundamental Interactions: Quantum Aspects", Vietri
sul Mare, Italy, 25th-31st May, 2003, 10 pages, typset in LaTe
On Representations of Conformal Field Theories and the Construction of Orbifolds
We consider representations of meromorphic bosonic chiral conformal field
theories, and demonstrate that such a representation is completely specified by
a state within the theory. The necessary and sufficient conditions upon this
state are derived, and, because of their form, we show that we may extend the
representation to a representation of a suitable larger conformal field theory.
In particular, we apply this procedure to the lattice (FKS) conformal field
theories, and deduce that Dong's proof of the uniqueness of the twisted
representation for the reflection-twisted projection of the Leech lattice
conformal field theory generalises to an arbitrary even (self-dual) lattice. As
a consequence, we see that the reflection-twisted lattice theories of Dolan et
al are truly self-dual, extending the analogies with the theories of lattices
and codes which were being pursued. Some comments are also made on the general
concept of the definition of an orbifold of a conformal field theory in
relation to this point of view.Comment: 11 pages, LaTeX. Updated references and added preprint n
Noncommutative BTZ Black Hole and Discrete Time
We search for all Poisson brackets for the BTZ black hole which are
consistent with the geometry of the commutative solution and are of lowest
order in the embedding coordinates. For arbitrary values for the angular
momentum we obtain two two-parameter families of contact structures. We obtain
the symplectic leaves, which characterize the irreducible representations of
the noncommutative theory. The requirement that they be invariant under the
action of the isometry group restricts to symplectic leaves,
where is associated with the Schwarzschild time. Quantization may then lead
to a discrete spectrum for the time operator.Comment: 10 page
Bulk Emission of Scalars by a Rotating Black Hole
We study in detail the scalar-field Hawking radiation emitted into the bulk by a higher-dimensional, rotating black hole. We numerically compute the angular eigenvalues, and solve the radial equation of motion in order to find transmission factors. The latter are found to be enhanced by the angular momentum of the black hole, and to exhibit the well-known effect of superradiance. The corresponding power spectra for scalar fields show an enhancement with the number of dimensions, as in the non-rotating case. On the other hand, the proportion of the total (i.e., bulk+brane) power that is emitted into the bulk decreases monotonically with the angular momentum. We compute the total mass loss rate of the black hole for a variety of black-hole angular momenta and bulk dimensions, and find that, in all cases, the bulk emission remains significantly smaller than the brane emission. The angular-momentum loss rate is also computed and found to have a smaller value in the bulk than on the brane
Hardening electronic devices against very high total dose radiation environments
The possibilities and limitations of hardening silicon semiconductor devices to the high neutron and gamma radiation levels and greater than 10 to the eighth power rads required for the NERVA nuclear engine development are discussed. A comparison is made of the high dose neutron and gamma hardening potential of bipolar, metal insulator semiconductors and junction field effect transistors. Experimental data is presented on device degradation for the high neutron and gamma doses. Previous data and comparisons indicate that the JFET is much more immune to the combined neutron displacement and gamma ionizing effects than other transistor types. Experimental evidence is also presented which indicates that p channel MOS devices may be able to meet the requirements
Correlation Functions of Conserved Currents in Four Dimensional Conformal Field Theory
We derive a generating function for all the 3-point functions of higher spin
conserved currents in four dimensional conformal field theory. The resulting
expressions have a rather surprising factorized form which suggest that they
can all be realized by currents built from free massless fields of arbitrary
(half-)integer spin s. This property is however not necessarily true also for
the higher-point functions. As an illustration we analyze the general 4-point
function of conserved abelian U(1) currents of scale dimension equal to three
and find that apart from the two free field realizations there is a unique
possible function which may correspond to an interacting theory. Although this
function passes several non-trivial consistency tests, it remains an open
challenging problem whether it can be actually realized in an interacting CFT.Comment: 20 pages, LaTeX, references adde
Uncertainties in modelling neutrino interactions for oscillation experiments
Accelerator-based neutrino oscillation experiments have the potential to
revolutionise our understanding of fundamental physics, offering an opportunity
to characterise charge-parity violation in the lepton section, to determine the
neutrino mass ordering and to explore the possibility of physics beyond
three-flavour neutrino mixing. However, as more data is collected the current
and next-generation of experiments will require increasingly precise control
over the systematic uncertainties within their analyses. It is well known that
some of the most challenging uncertainties to overcome stem from our uncertain
modelling of neutrino-nucleus interactions, arising because measured event
rates depend on the neutrino interaction cross section in addition to any
oscillation probability. The sources of these uncertainties are often related
to subtle details of the pertinent nuclear physics, such as those of the target
nucleus ground state, which are extremely difficult to control with sufficient
precision. Confronting such uncertainties requires both state-of-art
theoretical modelling and precise measurements of neutrino interaction event
rates at experiment's near detectors, before oscillations are likely occur.
These proceedings will briefly review the role of neutrino interaction
systematic uncertainties in current and future measurements of neutrino
oscillations.Comment: 4 pages, 2 figures. Proceedings for a talk given at NOW202
- …