355 research outputs found

    Effect of CH4_{4} addition on excess electron mobility in liquid Kr

    Full text link
    The excess electrons mobility μ\mu has been measured recently in liquid mixtures of Kr and CH4_{4} as a function of the electric field up to E≈104V/cmE\approx 10^{4} V/cm and of the CH4_{4} concentration xx up to x≈10x \approx 10 % , at temperatures T≈130K,T\approx 130 K, fairly close to the normal boiling point of Kr (Tb≈120K)(T_{b}\approx 120 K)(folegani). We present here new data which extend the previous set in the region of low electric field. The experimental results are interpreted in terms of a kinetic model previously proposed to explain the concentration dependent behavior of μ\mu in liquid Ar--Kr and Ar--Xe mixtures. The main result is that CH4_{4} is more effective in enhancing energy--transfer rather than momentum--transfer in comparison with mixtures of liquified noble gases. The field dependence of μ\mu is quite complicate. In particular, at intermediate values of the field, there appears to be a crossover between two different electric--field dependent behaviors of μ.\mu. The electric field strength at crossover is well correlated with the concentration of CH4._{4}. This fact suggests that different excitations of the molecular solute might be involved in the momentum-- and energy--transfer processes for different values of the mean electron energy.Comment: 17, pages,7 figures, RevTeX4, submitted to J.Chem.Phy

    Performance evaluation of novel square-bordered position-sensitive silicon detectors with four-corner readout

    Full text link
    We report on a recently developed novel type of large area (62 mm x 62 mm) position sensitive silicon detector with four-corner readout. It consists of a square-shaped ion-implanted resistive anode framed by additional low-resistivity strips with resistances smaller than the anode surface resistance by a factor of 2. The detector position linearity, position resolution, and energy resolution were measured with alpha-particles and heavy ions. In-beam experimental results reveal a position resolution below 1 mm (FWHM) and a very good non-linearity of less than 1% (rms). The energy resolution determined from 228Th alpha source measurements is around 2% (FWHM).Comment: 13 pages, 10 figures, submitted to Nucl. Instr. and Meth.

    Preparation of Neutron-activated Xenon for Liquid Xenon Detector Calibration

    Full text link
    We report the preparation of neutron-activated xenon for the calibration of liquid xenon (LXe) detectors. Gamma rays from the decay of xenon metastable states, produced by fast neutron activation, were detected and their activities measured in a LXe scintillation detector. Following a five-day activation of natural xenon gas with a Cf-252 (4 x 10^5 n/s) source, the activities of two gamma ray lines at 164 keV and 236 keV, from Xe-131m and Xe-129m metastable states, were measured at about 95 and 130 Bq/kg, respectively. We also observed three additional lines at 35 keV, 100 keV and 275 keV, which decay away within a few days. No long-lifetime activity was observed after the neutron activation.Comment: to be published in NIM A, corrected typos in Table 1 and Fig.6 of the previous versio

    High-Temperature Superconducting Level Meter for Liquid Argon Detectors

    Get PDF
    Capacitive devices are customarily used as probes to measure the level of noble liquids in detectors operated for neutrino studies and dark matter searches. In this work we describe the use of a high-temperature superconducting material as an alternative to control the level of a cryogenic noble liquid. Lab measurements indicate that the superconductor shows a linear behaviour, a high degree of stability and offers a very accurate determination of the liquid volume. This device is therefore a competitive instrument and shows several advantages over conventional level meters.Comment: 13 pages, 11 figures. Accepted for publication in JINS

    Spectroscopy and Imaging Performance of the Liquid Xenon Gamma-Ray Imaging Telescope (LXeGRIT)

    Get PDF
    LXeGRIT is a balloon-borne Compton telescope based on a liquid xenon time projection chamber (LXeTPC) for imaging cosmic \g-rays in the energy band of 0.2-20 MeV. The detector, with 400 cm2^2 area and 7 cm drift gap, is filled with high purity LXe. Both ionization and scintillation light signals are detected to measure the energy deposits and the three spatial coordinates of individual \g -ray interactions within the sensitive volume. The TPC has been characterized with repeated measurements of its spectral and Compton imaging response to \g -rays from radioactive sources such as \na, \cs, \yt and Am-Be. The detector shows a linear response to \g -rays in the energy range 511 keV -4.4 MeV, with an energy resolution (FWHM) of \Delta E/E=8.8% \: \sqrt{1\MeV /E}. Compton imaging of \yt \g -ray events with two detected interactions is consistent with an angular resolution of ∼\sim 3 degrees (RMS) at 1.8 MeV.Comment: To appear in: Hard X-Ray, Gamma-Ray and Neutron Detector Physics XI, 2000; Proc. SPIE, vol. 4140; K.A. Flanagan & O.H. Siegmund, ed

    Liquid Xenon Detectors for Positron Emission Tomography

    Full text link
    PET is a functional imaging technique based on detection of annihilation photons following beta decay producing positrons. In this paper, we present the concept of a new PET system for preclinical applications consisting of a ring of twelve time projection chambers filled with liquid xenon viewed by avalanche photodiodes. Simultaneous measurement of ionization charge and scintillation light leads to a significant improvement to spatial resolution, image quality, and sensitivity. Simulated performance shows that an energy resolution of <10% (FWHM) and a sensitivity of 15% are achievable. First tests with a prototype TPC indicate position resolution <1 mm (FWHM).Comment: Paper presented at the International Nuclear Physics Conference, Vancouver, Canada, 201

    On the Background Rate in the LXeGRIT Instrument during the 2000 Balloon Flight

    Get PDF
    LXeGRIT is the first prototype of a novel Compton telescope for MeV gamma-ray astrophysics based on a Liquid Xenon Time Projection Chamber (LXeTPC), sensitive in the energy band of 0.15-10 MeV. In this homogeneous, 3D position sensitive detector, gamma rays with at least two interactions in the sensitive volume of 2800 cm3^{3}, are imaged as in a standard Compton telescope. Gamma-rays with a single interaction cannot be imaged and constitute a background which can be easily identified and rejected. Charged particles and localized beta-particles background is also easily suppressed based on the TPC localization capability with millimeter resolution. A measurement of the total gamma-ray background rate in near space conditions and the background rejection power of the LXeTPC was a primary goal of the LXeGRIT balloon flight program. We present here a preliminary analysis addressing this question, based on balloon flight data acquired during the Oct 4-5, 2000 LXeGRIT balloon flight from Ft. Sumner, NM. In this long duration (27 hr) balloon experiment, the LXeGRIT TPC was not surrounded by any gamma-ray or charged particle shield. Single site events and charged particles were mostly rejected on-line at the first and second trigger level. The remaining count rate of single-site \g-ray events, at an average atmospheric depth of 3.2 g cm−2^{-2}, is consistent with that expected from atmospheric and diffuse gamma-ray background, taking into account the instrument mass model and response.Comment: 13 pages, 12 figures, SPIE 2002 Proceedings, Conf. Vol. 4851 - 151; corrected reference

    Demonstration and Comparison of Operation of Photomultiplier Tubes at Liquid Argon Temperature

    Full text link
    Liquified noble gases are widely used as a target in direct Dark Matter searches. Signals from scintillation in the liquid, following energy deposition from the recoil nuclei scattered by Dark Matter particles (e.g. WIMPs), should be recorded down to very low energies by photosensors suitably designed to operate at cryogenic temperatures. Liquid Argon based detectors for Dark Matter searches currently implement photo multiplier tubes for signal read-out. In the last few years PMTs with photocathodes operating down to liquid Argon temperatures (87 K) have been specially developed with increasing Quantum Efficiency characteristics. The most recent of these, Hamamatsu Photonics Mod. R11065 with peak QE up to about 35%, has been extensively tested within the R&D program of the WArP Collaboration. During these testes the Hamamatsu PMTs showed superb performance and allowed obtaining a light yield around 7 phel/keVee in a Liquid Argon detector with a photocathodic coverage in the 12% range, sufficient for detection of events down to few keVee of energy deposition. This shows that this new type of PMT is suited for experimental applications, in particular for new direct Dark Matter searches with LAr-based experiments
    • …
    corecore